Debian Developer’s Reference

Developer’s Reference Team
<developers-reference@packages.debian.org>
Andreas Barth
Adam Di Carlo
Raphaél Hertzog
Christian Schwarz
Ian Jackson

ver. 3.3.6, 23 January, 2005

Copyright Notice

copyright © 2004—2005 Andreas Barth
copyright © 1998—2003 Adam Di Carlo
copyright © 2002—2003 Raphaél Hertzog
copyright © 1997, 1998 Christian Schwarz

This manual is free software; you may redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2,
or (at your option) any later version.

This is distributed in the hope that it will be useful, but without any warranty; without even the
implied warranty of merchantability or fitness for a particular purpose. See the GNU General
Public License for more details.

A copy of the GNU General Public License is available as /usr/share/common-licenses

/IGPL in the Debian GNU/Linux distribution or on the World Wide Web at the GNU web site
(http://www.gnu.org/copyleft/gpl.html). You can also obtain it by writing to the
Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

http://www.gnu.org/copyleft/gpl.html

Contents

1 Scope of This Document

2 Applying to Become a Maintainer

21 Gettingstarted L L
2.2 Debian mentorsand sponsors oo
2.3 Registering as a Debiandeveloper

Debian Developer’s Duties

3.1 Maintaining your Debian information
3.2 Maintaining your publickey. o oo L oo
33 Voting.
34 Goingonvacationgracefully
3.5 Coordination with upstream developers
3.6 Managing release-criticalbugs 0 0 L.
37 Retiring e

Resources for Debian Developers

41 Mailinglists
41.1 Basicrulesforuse. e
41.2 Coredevelopment mailinglists
413 Speciallists
414 Requesting new development-related lists
42 IRCchannels. e
4.3 Documentation L e
44 Debianmachines e

CONTENTS ii

441 Thebugsserver e 14

442 Theftp-masterserver 14

443 Thenon-USserver iieennnnee.. 15

444 TheWww-masterserver v v v v it vt i .. 15

445 Thepeoplewebserver 15

446 TheCVSserver it 16

447 chroots to different distributions L Lo L. 16

45 The Developers Database 16
4.6 TheDebianarchive 17
4.6.1 Sections 19

4.6.2 Architectures 19

463 Packages 20

464 Distributions 20

4.6.5 Releasecodenames 22

4.7 Debian mirrors L 23
48 Thelncomingsystem 23
49 Packageinformation L oL Lo 24
49.1 Ontheweb 24

492 Themadison wutility 24

4.10 The Package Tracking System 25
4.10.1 ThePTSemailinterface 26
410.2 Filtering PTSmails L o 27
4.10.3 Forwarding CVS commitsinthe PTS 27
4104 ThePTSwebinterface 27

411 Developer’s packagesoverview 29
412 Debian *Forge: Alioth 29
5 Managing Packages 31
51 Newpackages e 31
52 Recording changesinthepackage 32

53 Testingthepackage o 32

CONTENTS 1ii

54
55

5.6

5.7
5.8

59

5.10

5.11

Layout of the source package 33
Picking adistribution o o oo 34
5.5.1 Special case: uploads to the stable distribution 34
5.5.2 Special case: uploads to testing/testing-proposed-updates 35
Uploadingapackage 35
5.6.1 Uploadingtoftp-master 35
56.2 Uploadingtonon-US 35
56.3 Delayeduploads o L. 36
564 Securityuploads o o 36
565 Otheruploadqueues 36
5.6.6 Notification that a new package has beeninstalled 37
Specifying the package section, subsection and priority 37
Handlingbugs. 38
5.8.1 Monitoringbugs L o o 38
582 Respondingtobugs 39
583 Bughousekeeping L oL 39
5.8.4 Whenbugs are closed by new uploads 41
5.8.5 Handling security-relatedbugs L. 42
Moving, removing, renaming, adopting, and orphaning packages 45
59.1 Movingpackages 46
59.2 Removingpackages 46
59.3 Replacing or renaming packages 0L 47
594 Orphaningapackage 47
595 Adoptingapackage oo 48
Portingand beingported L 438
510.1 Beingkindtoporters 48
5.10.2 Guidelines for porteruploads o oL 50
5.10.3 Porting infrastructure and automation 51
Non-Maintainer Uploads (NMUs) 52
511.1 HowtodoaNMU 53

5112 NMU versionnumbering 54

CONTENTS iv

5.11.3 Source NMUs must have a new changelogentry 55
5.11.4 Source NMUs and the Bug Tracking System 55
511.5 Buildingsource NMUs 56
511.6 Acknowledgingan NMU 56
5117 NMUvsQAwuploads 56
5118 WhocandoanNMU 56
5119 Howdakdetects NMUs 57
51110 Terminology 57

512 Collaborative maintenance o 57
513 The testing distribution oo oo 58
5131 Basics. . . . v v i 58
513.2 Updates fromunstable 58
513.3 Directupdatestotesting L L L 61
5.13.4 Frequently asked questions 62

6 Best Packaging Practices 65
6.1 Best practices for debian/rules o oo oL 65
6.1.1 Helperscripts 65

6.1.2 Separating your patches into multiplefiles 66

6.1.3 Multiple binary packages 67

6.2 Best practices for debian/control Lo oo oo oo 67
6.2.1 General guidelines for package descriptions 67

6.2.2 The package synopsis, or short description 68

6.23 Thelongdescription 69

6.24 Upstreamhomepage. 69

6.3 Best practices for debian/changelog 70
6.3.1 Writing useful changelogentries 70

6.3.2 Common misconceptions about changelog entries 71

6.3.3 Common errors in changelogentries 71

6.3.4 Supplementing changelogs with NEWS.Debian files. 72

6.4 Best practices for maintainer scripts L L o Lo Lo 73

CONTENTS \%

6.5 Configuration management with debconf 74
6.5.1 Donotabusedebconf 74

6.5.2 General recommendations for authors and translators. 75

6.5.3 Templates fields definition. 76

6.5.4 Templates fields specificstyleguide 78

6.6 Internationalization L o L 80
6.6.1 Handling debconf translations 80

6.6.2 Internationalized documentation 80

6.7 Common packaging situations 81
6.7.1 Packages using autoconf /automake 81

6.7.2 Libraries e 81

6.7.3 Documentation o o 0000 81

6.74 Specifictypesof packages L o oo 82

6.7.5 Architecture-independentdatao o oL 82

6.7.6 Needing a certain locale during build 83

6.7.7 Make transition packages deborphan compliant 83

6.7.8 Best practices for orig.tar.gz files 83

7 Beyond Packaging 87
71 Bugreporting e 87
7.1.1 Reporting lots of bugs at once (mass bug filing) 88

7.2 Quality Assuranceeffort L L oo o 88
721 Dailywork. 88

722 Bugsquashingparties 88

7.3 Contacting other maintainers 89
74 Dealing with inactive and/or unreachable maintainers 89
7.5 Interacting with prospective Debian developers 91
7.5.1 Sponsoringpackages o 91

7.5.2 Managing sponsored packages L L oL, 91

753 Advocatingnew developers. o oL 92

7.5.4 Handling new maintainer applications 92

CONTENTS vi
8 Internationalizing, translating, being internationalized and being translated 93
8.1 How translations are handled within Debian 93
8.2 I18N & L10N FAQ for maintainers v v v i i n .. 94
82.1 Howtogetagiventexttranslated 94

8.2.2 How to geta given translationreviewed 95

8.2.3 How to geta given translationupdated 95

8.24 How to handle a bug report concerning a translation 95

8.3 I18N & L10N FAQ for translators 95
8.3.1 How to help the translationeffort 95

8.3.2 How to provide a translation for inclusion in a package 96

8.4 Best current practice concerning 110n L oL 96
A Overview of Debian Maintainer Tools 97
Al Coretools e 97
ALl dpkg-dev e 97
Al12 debconf 97
A13 fakeroot 98

A2 Packagelinttools 98
A21 lintlan .. 98
A22 linda ... 98
A23 debdiff ... 99

A.3 Helpers fordebianfrules o oo 99
A3.1 debhelper e 99
A32 debmake 99
A33 dh-make 100
A34 yada 100
A35 equivs . .. 100

A4 Packagebuilders 100
A4.1 cvs-buildpackage 100
A42 debootstrap 101
A43 pbuilder .. e 101

CONTENTS vii
A44 sbuild .. 101

A5 Packageuploaders L o 101
Ab5.1 dupload e 101
AB2 dput .o 101
AB3 deout ..o e 102

A.6 Maintenance automation oL Lo 102
A.6.1 devscripts .. L 102
A.6.2 autotools-dev 102
A.6.3 dpkg-repack 102
A64 alien .. 103
A65 debsums 103
A.6.6 dpkg-dev-el .. 103
A.6.7 dpkg-depcheck 103

A7 Portingtools 103
A71 quinn-diff L L e 103
A7.2 dpKg-CroSS . . . o o 104

A.8 Documentation and information 104
A.8.1 debiandoc-sgml 104
A.8.2 debian-keyring 104
A83 debview 104

CONTENTS viii

Chapter 1

Scope of This Document

The purpose of this document is to provide an overview of the recommended procedures and
the available resources for Debian developers.

The procedures discussed within include how to become a maintainer ("Applying to Become a
Maintainer” on page 3); how to create new packages ("New packages’ on page 31) and how to
upload packages (‘Uploading a package” on page 35); how to handle bug reports (‘Handling
bugs’ on page 38); how to move, remove, or orphan packages (‘Moving, removing, renaming,
adopting, and orphaning packages’ on page 45); how to port packages (‘Porting and being
ported” on page 48); and how and when to do interim releases of other maintainers” packages
(‘Non-Maintainer Uploads (NMUs)” on page 52).

The resources discussed in this reference include the mailing lists (‘Mailing lists” on page 11)
and servers (‘Debian machines’ on page 13); a discussion of the structure of the Debian archive
("The Debian archive” on page 17); explanation of the different servers which accept package
uploads (“Uploading to ftp-master " on page 35); and a discussion of resources which can
help maintainers with the quality of their packages (‘Overview of Debian Maintainer Tools” on
page 97).

It should be clear that this reference does not discuss the technical details of Debian pack-
ages nor how to generate them. Nor does this reference detail the standards to which Debian
software must comply. All of such information can be found in the Debian Policy Manual
(http://www.debian.org/doc/debian-policy/).

Furthermore, this document is not an expression of formal policy. It contains documentation for
the Debian system and generally agreed-upon best practices. Thus, it is not what is called a
“normative” document.

http://www.debian.org/doc/debian-policy/

Chapter 1. Scope of This Document

Chapter 2

Applying to Become a Maintainer

2.1 Getting started

So, you've read all the documentation, you've gone through the Debian New Maintainers’
Guide (http://www.debian.org/doc/maint-guide/), understand what everything in
the hello example package is for, and you're about to Debianize your favorite piece of soft-
ware. How do you actually become a Debian developer so that your work can be incorporated
into the Project?

Firstly, subscribe to <debian-devel@lists.debian.org> if you haven’t already. Send the
word subscribe in the Subject of an email to <debian-devel-REQUEST @lists.debian.

org> . In case of problems, contact the list administrator at <listmaster@lists.debian.

org> . More information on available mailing lists can be found in ‘Mailing lists” on page 11.
<debian-devel-announce@lists.debian.org> is another list which is mandatory for
anyone who wishes to follow Debian’s development.

You should subscribe and lurk (that is, read without posting) for a bit before doing any coding,
and you should post about your intentions to work on something to avoid duplicated effort.

Another good list to subscribe to is <debian-mentors@lists.debian.org> . See ‘Debian
mentors and sponsors” on the next page for details. The IRC channel #debian can also be
helpful; see ‘IRC channels” on page 12.

When you know how you want to contribute to Debian GNU/Linux, you should get in con-
tact with existing Debian maintainers who are working on similar tasks. That way, you can
learn from experienced developers. For example, if you are interested in packaging existing
software for Debian, you should try to get a sponsor. A sponsor will work together with you
on your package and upload it to the Debian archive once they are happy with the packaging
work you have done. You can find a sponsor by mailing the <debian-mentors@lists.
debian.org> mailing list, describing your package and yourself and asking for a spon-
sor (see ‘Sponsoring packages” on page 91 and http://people.debian.org/~mpalmer/
debian-mentors_FAQ.htm| for more information on sponsoring). On the other hand, if
you are interested in porting Debian to alternative architectures or kernels you can subscribe
to port specific mailing lists and ask there how to get started. Finally, if you are interested in

http://www.debian.org/doc/maint-guide/
http://people.debian.org/~mpalmer/debian-mentors_FAQ.html
http://people.debian.org/~mpalmer/debian-mentors_FAQ.html

Chapter 2. Applying to Become a Maintainer 4

documentation or Quality Assurance (QA) work you can join maintainers already working on
these tasks and submit patches and improvements.

2.2 Debian mentors and sponsors

The mailing list <debian-mentors@lists.debian.org> has been set up for novice main-
tainers who seek help with initial packaging and other developer-related issues. Every new
developer is invited to subscribe to that list (see ‘Mailing lists” on page 11 for details).

Those who prefer one-on-one help (e.g., via private email) should also post to that list and an
experienced developer will volunteer to help.

In addition, if you have some packages ready for inclusion in Debian, but are waiting for your
new maintainer application to go through, you might be able find a sponsor to upload your
package for you. Sponsors are people who are official Debian maintainers, and who are willing
to criticize and upload your packages for you. Please read the inofficial debian-mentors FAQ
at http://people.debian.org/~mpalmer/debian-mentors_FAQ.html first.

If you wish to be a mentor and/or sponsor, more information is available in ‘Interacting with
prospective Debian developers’ on page 91.

2.3 Registering as a Debian developer

Before you decide to register with Debian GNU/Linux, you will need to read all the informa-
tion available at the New Maintainer’s Corner (http://www.debian.org/devel/join/

newmaint). It describes exactly the preparations you have to do before you can register to
become a Debian developer. For example, before you apply, you have to read the Debian So-
cial Contract (http://www.debian.org/social_contract). Registering as a developer
means that you agree with and pledge to uphold the Debian Social Contract; it is very im-
portant that maintainers are in accord with the essential ideas behind Debian GNU/Linux.
Reading the GNU Manifesto (http://www.gnu.org/gnu/manifesto.html) would also
be a good idea.

The process of registering as a developer is a process of verifying your identity and intentions,
and checking your technical skills. As the number of people working on Debian GNU/Linux
has grown to over 900 people and our systems are used in several very important places, we
have to be careful about being compromised. Therefore, we need to verify new maintainers
before we can give them accounts on our servers and let them upload packages.

Before you actually register you should have shown that you can do competent work and will
be a good contributor. You show this by submitting patches through the Bug Tracking System
and having a package sponsored by an existing maintainer for a while. Also, we expect that
contributors are interested in the whole project and not just in maintaining their own packages.
If you can help other maintainers by providing further information on a bug or even a patch,
then do so!

http://people.debian.org/~mpalmer/debian-mentors_FAQ.html
http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint
http://www.debian.org/social_contract
http://www.gnu.org/gnu/manifesto.html

Chapter 2. Applying to Become a Maintainer 5

Registration requires that you are familiar with Debian’s philosophy and technical documen-
tation. Furthermore, you need a GnuPG key which has been signed by an existing Debian
maintainer. If your GnuPG key is not signed yet, you should try to meet a Debian main-
tainer in person to get your key signed. There’s a GnuPG Key Signing Coordination page
(http://nm.debian.org/gpg.php) which should help you find a maintainer close to you.
(If there is no Debian maintainer close to you, alternative ways to pass the ID check may
be permitted as an absolute exception on a case-by-case-basis. See the identification page
(http://www.debian.org/devel/join/nm-step2) for more informations.)

If you do not have an OpenPGP key yet, generate one. Every developer needs a OpenPGP
key in order to sign and verify package uploads. You should read the manual for the software
you are using, since it has much important information which is critical to its security. Many
more security failures are due to human error than to software failure or high-powered spy
techniques. See ‘Maintaining your public key” on page 7 for more information on maintaining
your public key.

Debian uses the GNU Privacy Guard (package gnupg version 1 or better) as its baseline
standard. You can use some other implementation of OpenPGP as well. Note that OpenPGP
is an open standard based on RFC 2440 (http://www.gnupg.org/rfc2440.htm|).

You need a type 4 key for use in Debian Development. Your key length must be at least 1024
bits; there is no reason to use a smaller key, and doing so would be much less secure. Your
key must be signed with your own user ID; this prevents user ID tampering. gpg does this
automatically.

If your public key isn’t on public key servers such as subkeys.pgp.net , please read the
documentation available locally in /usr/share/doc/pgp/keyserv.doc . That document
contains instructions on how to put your key on the public key servers. The New Maintainer
Group will put your public key on the servers if it isn’t already there.

Some countries restrict the use of cryptographic software by their citizens. This need not im-
pede one’s activities as a Debian package maintainer however, as it may be perfectly legal to
use cryptographic products for authentication, rather than encryption purposes. If you live in
a country where use of cryptography even for authentication is forbidden then please contact
us so we can make special arrangements.

To apply as a new maintainer, you need an existing Debian maintainer to verify your applica-
tion (an advocate). After you have contributed to Debian for a while, and you want to apply to
become a registered developer, an existing developer with whom you have worked over the
past months has to express their belief that you can contribute to Debian successfully.

When you have found an advocate, have your GnuPG key signed and have already con-
tributed to Debian for a while, you're ready to apply. You can simply register on our appli-
cation page (http://nm.debian.org/newnm.php). After you have signed up, your advo-
cate has to confirm your application. When your advocate has completed this step you will
be assigned an Application Manager who will go with you through the necessary steps of the
New Maintainer process. You can always check your status on the applications status board
(http://nm.debian.org/).

For more details, please consult New Maintainer’s Corner (http://www.debian.org/

http://nm.debian.org/gpg.php
http://www.debian.org/devel/join/nm-step2
http://www.gnupg.org/rfc2440.html
http://nm.debian.org/newnm.php
http://nm.debian.org/
http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint

Chapter 2. Applying to Become a Maintainer 6

devel/join/newmaint) at the Debian web site. Make sure that you are familiar with the
necessary steps of the New Maintainer process before actually applying. If you are well pre-
pared, you can save a lot of time later on.

http://www.debian.org/devel/join/newmaint
http://www.debian.org/devel/join/newmaint

Chapter 3

Debian Developer’s Duties

3.1 Maintaining your Debian information

There’s a LDAP database containing information about Debian developers at https://db.
debian.org/ . You should enter your information there and update it as it changes. Most
notably, make sure that the address where your debian.org email gets forwarded to is always
up to date, as well as the address where you get your debian-private subscription if you choose
to subscribe there.

For more information about the database, please see “The Developers Database’” on page 16.

3.2 Maintaining your public key

Be very careful with your private keys. Do not place them on any public servers or multiuser
machines, such as the Debian servers (see ‘Debian machines’ on page 13). Back your keys up;
keep a copy offline. Read the documentation that comes with your software; read the PGP
FAQ (http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faqg/).

You need to ensure not only that your key is secure against being stolen, but also that it is secure
against being lost. Generate and make a copy (best also in paper form) of your revocation
certificate; this is needed if your key is lost.

If you add signatures to your public key, or add user identities, you can update the Debian key
ring by sending your key to the key server at keyring.debian.org

If you need to add a completely new key or remove an old key, you need to get the new
key signed by another developer. After this, a mail signed by another developer listing your
account name, the keyids of the old and of the new key and the reason should be send to
<keyring-maint@debian.org> . If the old key is compromised or invalid, you also have to
add the revocation certificate. If there is no real reason for a new key, the Keyring Maintainers
will only accept it if it’s more secure and connected to the old key.

https://db.debian.org/
https://db.debian.org/
http://www.cam.ac.uk.pgp.net/pgpnet/pgp-faq/

Chapter 3. Debian Developer’s Duties 8

The same key extraction routines discussed in ‘Registering as a Debian developer” on page 4
apply.

You can find a more in-depth discussion of Debian key maintenance in the documentation of
the debian-keyring package.

3.3 Voting

Even though Debian isn’t really a democracy, we use a democratic process to elect our leaders
and to approve general resolutions. These procedures are defined by the Debian Constitution
(http://www.debian.org/devel/constitution).

Other than the yearly leader election, votes are not routinely held, and they are not under-
taken lightly. Each proposal is first discussed on the <debian-vote@lists.debian.org>

mailing list and it requires several endorsements before the project secretary starts the voting
procedure.

You don’t have to track the pre-vote discussions, as the secretary will issue several calls for
votes on <debian-devel-announce@lists.debian.org> (and all developers are ex-
pected to be subscribed to that list). Democracy doesn’t work well if people don’t take part
in the vote, which is why we encourage all developers to vote. Voting is conducted via GPG-
signed/encrypted emails messages.

The list of all the proposals (past and current) is available on the Debian Voting Information
(http://www.debian.org/vote/) page, along with information on how to make, second
and vote on proposals.

3.4 Going on vacation gracefully

It is common for developers to have periods of absence, whether those are planned vacations or
simply being buried in other work. The important thing to notice is that the other developers
need to know that you're on vacation so that they can do whatever is needed if a problem
occurs with your packages or other duties in the project.

Usually this means that other developers are allowed to NMU (see ‘Non-Maintainer Uploads
(NMUs)" on page 52) your package if a big problem (release critical bugs, security update,
etc.) occurs while you're on vacation. Sometimes it’s nothing as critical as that, but it’s still
appropriate to let the others know that you're unavailable.

In order to inform the other developers, there are two things that you should do. First send a
mail to <debian-private@Ilists.debian.org> with “[VAC] ” prepended to the subject
of your message' and state the period of time when you will be on vacation. You can also give
some special instructions on what to do if a problem occurs.

!This is so that the message can be easily filtered by people who don’t want to read vacation notices.

http://www.debian.org/devel/constitution
http://www.debian.org/vote/

Chapter 3. Debian Developer’s Duties 9

The other thing to do is to mark yourself as “on vacation” in the Debian developers” LDAP
database (this information is only accessible to Debian developers). Don’t forget to remove the
“on vacation” flag when you come back!

Ideally, you should sign up at the GPG coordination site (http://nm.debian.org/gpg.

php) when booking a holiday and check if anyone there is looking for signing. This is espe-
cially important when people go to exotic places where we don’t have any developers yet but
where there are people who are interested in applying.

3.5 Coordination with upstream developers

A big part of your job as Debian maintainer will be to stay in contact with the upstream de-
velopers. Debian users will sometimes report bugs that are not specific to Debian to our bug
tracking system. You have to forward these bug reports to the upstream developers so that
they can be fixed in a future upstream release.

While it’s not your job to fix non-Debian specific bugs, you may freely do so if you're able.
When you make such fixes, be sure to pass them on to the upstream maintainers as well. De-
bian users and developers will sometimes submit patches to fix upstream bugs — you should
evaluate and forward these patches upstream.

If you need to modify the upstream sources in order to build a policy compliant package, then
you should propose a nice fix to the upstream developers which can be included there, so that
you won't have to modify the sources of the next upstream version. Whatever changes you
need, always try not to fork from the upstream sources.

3.6 Managing release-critical bugs

Generally you should deal with bug reports on your packages as described in ‘Handling bugs’
on page 38. However, there’s a special category of bugs that you need to take care of — the so-
called release-critical bugs (RC bugs). All bug reports that have severity critical, grave or serious
are considered to have an impact on whether the package can be released in the next stable
release of Debian. Those bugs can delay the Debian release and/or can justify the removal of
a package at freeze time. That’s why these bugs need to be corrected as quickly as possible.

Developers who are part of the Quality Assurance (http://qa.debian.org/) group are
following all such bugs, and trying to help whenever possible. If, for any reason, you aren’t
able fix an RC bug in a package of yours within 2 weeks, you should either ask for help by
sending a mail to the Quality Assurance (QA) group <debian-ga@Iists.debian.org> ,
or explain your difficulties and present a plan to fix them by sending a mail to the bug report.
Otherwise, people from the QA group may want to do a Non-Maintainer Upload (see ‘Non-
Maintainer Uploads (NMUs)" on page 52) after trying to contact you (they might not wait as
long as usual before they do their NMU if they have seen no recent activity from you in the
BTS).

http://nm.debian.org/gpg.php
http://nm.debian.org/gpg.php
http://qa.debian.org/

Chapter 3. Debian Developer’s Duties 10

3.7 Retiring
If you choose to leave the Debian project, you should make sure you do the following steps:

1 Orphan all your packages, as described in ‘Orphaning a package” on page 47.

2 Send an email about why you are leaving the project to <debian-private@lists.
debian.org>

3 Notify the Debian key ring maintainers that you are leaving by emailing to
<keyring-maint@debian.org>

11

Chapter 4

Resources for Debian Developers

In this chapter you will find a very brief road map of the Debian mailing lists, the Debian
machines which may be available to you as a developer, and all the other resources that are
available to help you in your maintainer work.

4.1 Mailing lists

Much of the conversation between Debian developers (and users) is managed through a wide
array of mailing lists we host at lists.debian.org (http://lists.debian.org/).
To find out more on how to subscribe or unsubscribe, how to post and how not to post,
where to find old posts and how to search them, how to contact the list maintainers and see
various other information about the mailing lists, please read http://www.debian.org/
MailingLists/ . This section will only cover aspects of mailing lists that are of particular
interest to developers.

4.1.1 Basic rules for use

When replying to messages on the mailing list, please do not send a carbon copy (CQ to the
original poster unless they explicitly request to be copied. Anyone who posts to a mailing list
should read it to see the responses.

Cross-posting (sending the same message to multiple lists) is discouraged. As ever on the net,
please trim down the quoting of articles you're replying to. In general, please adhere to the
usual conventions for posting messages.

Please read the code of conduct (http://www.debian.org/MailingLists/
#codeofconduct) for more information.

4.1.2 Core development mailing lists

The core Debian mailing lists that developers should use are:

http://lists.debian.org/
http://www.debian.org/MailingLists/
http://www.debian.org/MailingLists/
http://www.debian.org/MailingLists/#codeofconduct
http://www.debian.org/MailingLists/#codeofconduct

Chapter 4. Resources for Debian Developers 12

e <debian-devel-announce@lists.debian.org> , used to announce important
things to developers. All developers are expected to be subscribed to this list.

e <debian-devel@lists.debian.org> , used to discuss various development related
technical issues.

e <debian-policy@lists.debian.org> , where the Debian Policy is discussed and
voted on.

¢ <debian-project@lists.debian.org> , used to discuss various non-technical is-

sues related to the project.

There are other mailing lists available for a variety of special topics; see http://lists.
debian.org/ for a list.

4.1.3 Special lists

<debian-private@lists.debian.org> is a special mailing list for private discussions
amongst Debian developers. It is meant to be used for posts which for whatever reason should
not be published publicly. As such, it is a low volume list, and users are urged not to use
<debian-private@lists.debian.org> unless it is really necessary. Moreover, do not
forward email from that list to anyone. Archives of this list are not available on the web for
obvious reasons, but you can see them using your shell account on lists.debian.org and
looking in the ~debian/archive/debian-private directory.

<debian-email@Iists.debian.org> is a special mailing list used as a grab-bag for De-
bian related correspondence such as contacting upstream authors about licenses, bugs, etc. or
discussing the project with others where it might be useful to have the discussion archived
somewhere.

4.1.4 Requesting new development-related lists

Before requesting a mailing list that relates to the development of a package (or a small group
of related packages), please consider if using an alias (via a .forward-aliasname file on mas-
ter.debian.org, which translates into a reasonably nice you-aliasname@debian.org address) or a
self-managed mailing list on Alioth is more appropriate.

If you decide that a regular mailing list on lists.debian.org is really what you want, go ahead
and fill in a request, following the HOWTO (http://www.debian.org/MailingLists/
HOWTO_start_list).

4.2 IRC channels

Several IRC channels are dedicated to Debian’s development. They are mainly hosted on the
freenode (http://www.freenode.net/) network (previously known as Open Projects Net-
work). The irc.debian.org DNS entry is an alias to irc.freenode.net

http://lists.debian.org/
http://lists.debian.org/
http://www.debian.org/MailingLists/HOWTO_start_list
http://www.debian.org/MailingLists/HOWTO_start_list
http://www.freenode.net/

Chapter 4. Resources for Debian Developers 13

The main channel for Debian in general is #debian. This is a large, general-purpose chan-
nel where users can find recent news in the topic and served by bots. #debian is for English
speakers; there are also #debian.de, #debian-fr, #debian-br and other similarly named channels
for speakers of other languages.

The main channel for Debian development is #debian-devel. It is a very active channel since
usually over 150 people are always logged in. It’s a channel for people who work on Debian,
it’s not a support channel (there’s #debian for that). It is however open to anyone who wants to
lurk (and learn). Its topic is commonly full of interesting information for developers.

Since #debian-devel is an open channel, you should not speak there of issues that are discussed
in <debian-private@lists.debian.org> . There’s another channel for this purpose, it’s
called #debian-private and it’s protected by a key. This key is available in the archives of debian-
private in master.debian.org:~debian/archive/debian-private/ , just zgrep for
#debian-private in all the files.

There are other additional channels dedicated to specific subjects. #debian-bugs is used for
coordinating bug squash parties. #debian-boot is used to coordinate the work on the debian-
installer. #debian-doc is occasionally used to talk about documentation, like the document you
are reading. Other channels are dedicated to an architecture or a set of packages: #debian-bsd,
#debian-kde, #debian-jr, #debian-edu, #debian-sf (SourceForge package), #debian-oo (OpenOffice
package) ...

Some non-English developers” channels exist as well, for example #debian-devel-fr for French
speaking people interested in Debian’s development.

Channels dedicated to Debian also exist on other IRC networks, notably on the Open and free
technology community (OFTC) (http://www.oftc.net/) IRC network.

To get a cloak on freenode, you send Goran Weinholt <weinholt@debian.org> a signed mail
where you tell what your nick is. Put “cloak” somewhere in the Subject: header. The nick
should be registered: Nick Setup Page (http:/freenode.net/fag.shtml#nicksetup).
The mail needs to be signed by a key in the Debian keyring. Please see Freenodes documen-
tation (http://freenode.net/faq.shtml#projectcloak) for more information about
cloaks.

4.3 Documentation

This document contains a lot of information which is useful to Debian developers, but it cannot
contain everything. Most of the other interesting documents are linked from The Developers’
Corner (http://www.debian.org/devel/). Take the time to browse all the links, you will
learn many more things.

4.4 Debian machines

Debian has several computers working as servers, most of which serve critical functions in
the Debian project. Most of the machines are used for porting activities, and they all have a

http://www.oftc.net/
http://freenode.net/faq.shtml#nicksetup
http://freenode.net/faq.shtml#projectcloak
http://www.debian.org/devel/

Chapter 4. Resources for Debian Developers 14

permanent connection to the Internet.

Most of the machines are available for individual developers to use, as long as the developers
follow the rules set forth in the Debian Machine Usage Policies (http://www.debian.org/
devel/dmup).

Generally speaking, you can use these machines for Debian-related purposes as you see fit.
Please be kind to system administrators, and do not use up tons and tons of disk space, net-
work bandwidth, or CPU without first getting the approval of the system administrators. Usu-
ally these machines are run by volunteers.

Please take care to protect your Debian passwords and SSH keys installed on Debian machines.
Avoid login or upload methods which send passwords over the Internet in the clear, such as
telnet, FTP, POP etc.

Please do not put any material that doesn’t relate to Debian on the Debian servers, unless you
have prior permission.

The current list of Debian machines is available at http://db.debian.org/machines.
cgi . That web page contains machine names, contact information, information about who can
log in, SSH keys etc.

If you have a problem with the operation of a Debian server, and you think that the system op-
erators need to be notified of this problem, the Debian system administrator team is reachable
at <debian-admin@lists.debian.org>

If you have a problem with a certain service, not related to the system administration (such as
packages to be removed from the archive, suggestions for the web site, etc.), generally you'll
report a bug against a “pseudo-package”. See ‘Bug reporting” on page 87 for information on
how to submit bugs.

Some of the core servers are restricted, but the information from there is mirrored to another
server.

4.4.1 The bugs server

bugs.debian.org is the canonical location for the Bug Tracking System (BTS).
It is restricted; a mirror is available on merkel .

If you plan on doing some statistical analysis or processing of Debian bugs, this would be
the place to do it. Please describe your plans on <debian-devel@lists.debian.org>

before implementing anything, however, to reduce unnecessary duplication of effort or wasted
processing time.

4.4.2 The ftp-master server

The ftp-master.debian.org server holds the canonical copy of the Debian archive (ex-
cluding the non-US packages). Generally, package uploads go to this server; see “Uploading a
package’ on page 35.

http://www.debian.org/devel/dmup
http://www.debian.org/devel/dmup
http://db.debian.org/machines.cgi
http://db.debian.org/machines.cgi

Chapter 4. Resources for Debian Developers 15

It is restricted; a mirror is available on merkel .

Problems with the Debian FIP archive generally need to be reported as bugs against the
ftp.debian.org pseudo-package or an email to <ftpmaster@debian.org> , but also
see the procedures in ‘Moving, removing, renaming, adopting, and orphaning packages’ on
page 45.

4.4.3 The non-US server

The non-US server, non-us.debian.org , holds the canonical copy of the non-US part of the
Debian archive. If you need to upload a package into one of the non-US sections, upload it to
this server; see ‘Uploading to non-US’ on page 35.

Problems with the non-US package archive should generally be submitted as bugs against the
nonus.debian.org pseudo-package (notice the lack of hyphen between “non” and “us” in
the pseudo-package name — that’s for backwards compatibility). Remember to check whether
or not someone else has already reported the problem to the Bug Tracking System (http:
//Ibugs.debian.org/nonus.debian.org).

44.4 The www-master server

The main web server is www-master.debian.org . It holds the official web pages, the face
of Debian for most newbies.

If you find a problem with the Debian web server, you should generally submit a bug against
the pseudo-package, www.debian.org . Remember to check whether or not someone else
has already reported the problem to the Bug Tracking System (http://bugs.debian.org/
www.debian.org).

4.4.5 The people web server

people.debian.org is the server used for developers” own web pages about anything re-
lated to Debian.

If you have some Debian-specific information which you want to serve on the
web, you can do this by putting material in the public_html directory under
your home directory on people.debian.org . This will be accessible at the URL
http://people.debian.org/~ your-user-id /.

You should only use this particular location because it will be backed up, whereas on other
hosts it won't.

Usually the only reason to use a different host is when you need to publish materials subject to
the U.S. export restrictions, in which case you can use one of the other servers located outside
the United States, such as the aforementioned non-us.debian.org

Send mail to <debian-devel@lists.debian.org> if you have any questions.

http://bugs.debian.org/nonus.debian.org
http://bugs.debian.org/nonus.debian.org
http://bugs.debian.org/www.debian.org
http://bugs.debian.org/www.debian.org

Chapter 4. Resources for Debian Developers 16

44.6 The CVS server

Our CVS server is located on cvs.debian.org

If you need to use a publicly accessible CVS server, for instance, to help coordinate work on a
package between many different developers, you can request a CVS area on the server.

Generally, cvs.debian.org offers a combination of local CVS access, anonymous client-
server read-only access, and full client-server access through ssh. Also, the CVS area can
be accessed read-only via the Web at http://cvs.debian.org/

To request a CVS area, send a request via email to <debian-admin@debian.org> . Include
the name of the requested CVS area, the Debian account that should own the CVS root area,
and why you need it.

4.4.7 chroots to different distributions

On some machines, there are chroots to different distributions available. You can use them like

vore% dchroot unstable
Executing shell in chroot: /org/vore.debian.org/chroots/user/unstable

In all chroots, the normal user home directories are available. You can find out which chroots
are available via http://db.debian.org/machines.cgi

4.5 The Developers Database

The Developers Database, at https://db.debian.org/ , is an LDAP directory for manag-
ing Debian developer attributes. You can use this resource to search the list of Debian devel-
opers. Part of this information is also available through the finger service on Debian servers,
try finger yourlogin@db.debian.org to see what it reports.

Developers can log into the database (https://db.debian.org/login.html) to change
various information about themselves, such as:

¢ forwarding address for your debian.org email

* subscription to debian-private

¢ whether you are on vacation

¢ personal information such as your address, country, the latitude and longitude of the
place where you live for use in the world map of Debian developers (http://www.
debian.org/devel/developers.loc), phone and fax numbers, IRC nickname and
web page

http://cvs.debian.org/
https://db.debian.org/
https://db.debian.org/login.html
http://www.debian.org/devel/developers.loc
http://www.debian.org/devel/developers.loc

Chapter 4. Resources for Debian Developers 17

¢ password and preferred shell on Debian Project machines

Most of the information is not accessible to the public, naturally. For more informa-
tion please read the online documentation that you can find at http://db.debian.org/
doc-general.html

Developers can also submit their SSH keys to be used for authorization on the official Debian
machines, and even add new *.debian.net DNS entries. Those features are documented at
http://db.debian.org/doc-mail.html

4.6 The Debian archive

The Debian GNU/Linux distribution consists of a lot of packages (.deb ’s, currently around
9000) and a few additional files (such as documentation and installation disk images).

Here is an example directory tree of a complete Debian archive:

dists/stable/main/
dists/stable/main/binary-i386/
dists/stable/main/binary-m68k/
dists/stable/main/binary-alpha/

dists/stable/main/source/

dists/stable/main/disks-i386/
dists/stable/main/disks-m68k/
dists/stable/main/disks-alpha/

dists/stable/contrib/
dists/stable/contrib/binary-i386/
dists/stable/contrib/binary-m68k/
dists/stable/contrib/binary-alpha/

dists/stable/contrib/source/
dists/stable/non-free/
dists/stable/non-free/binary-i386/
dists/stable/non-free/binary-m68k/
dists/stable/non-free/binary-alpha/

dists/stable/non-free/source/

dists/testing/
dists/testing/main/

http://db.debian.org/doc-general.html
http://db.debian.org/doc-general.html
http://db.debian.org/doc-mail.html

Chapter 4. Resources for Debian Developers 18

dists/testing/contrib/

dists/testing/non-free/

dists/unstable
dists/unstable/main/

dists/unstable/contrib/

dists/unstable/non-free/

pool/
pool/main/a/
pool/main/a/apt/

pool/main/b/
pool/main/b/bash/

pool/main/liba/
pool/main/liba/libalias-perl/

pool/main/m/
pool/main/m/mailx/

pool/non-free/n/
pool/non-free/n/netscape/

As you can see, the top-level directory contains two directories, dists/ and pool/ . The
latter is a “pool” in which the packages actually are, and which is handled by the archive
maintenance database and the accompanying programs. The former contains the distributions,
stable, testing and unstable. The Packages and Sources files in the distribution subdirectories
can reference files in the pool/ directory. The directory tree below each of the distributions is
arranged in an identical manner. What we describe below for stable is equally applicable to the
unstable and testing distributions.

dists/stable contains three directories, namely main, contrib , and non-free

In each of the areas, there is a directory for the source packages (source) and a directory for
each supported architecture (binary-i386 , binary-m68k , etc.).

The main area contains additional directories which hold the disk images and some essential
pieces of documentation required for installing the Debian distribution on a specific architec-
ture (disks-i386 , disks-m68k , etc.).

Chapter 4. Resources for Debian Developers 19

4.6.1 Sections

The main section of the Debian archive is what makes up the official Debian GNU/Linux
distribution. The main section is official because it fully complies with all our guidelines. The
other two sections do not, to different degrees; as such, they are not officially part of Debian
GNU/Linux.

Every package in the main section must fully comply with the Debian Free Software Guidelines
(http://www.debian.org/social_contract#guidelines) (DFSG) and with all other
policy requirements as described in the Debian Policy Manual (http://www.debian.org/
doc/debian-policy/). The DFSG is our definition of “free software.” Check out the Debian
Policy Manual for details.

Packages in the contrib section have to comply with the DFSG, but may fail other requirements.
For instance, they may depend on non-free packages.

Packages which do not conform to the DFSG are placed in the non-free section. These packages
are not considered as part of the Debian distribution, though we support their use, and we pro-
vide infrastructure (such as our bug-tracking system and mailing lists) for non-free software
packages.

The Debian Policy Manual (http://www.debian.org/doc/debian-policy/) contains a
more exact definition of the three sections. The above discussion is just an introduction.

The separation of the three sections at the top-level of the archive is important for all people
who want to distribute Debian, either via FTP servers on the Internet or on CD-ROMs: by
distributing only the main and contrib sections, one can avoid any legal risks. Some packages
in the non-free section do not allow commercial distribution, for example.

On the other hand, a CD-ROM vendor could easily check the individual package licenses of
the packages in non-free and include as many on the CD-ROMs as it’s allowed to. (Since this
varies greatly from vendor to vendor, this job can’t be done by the Debian developers.)

Note that the term “section” is also used to refer to categories which simplify the organiza-
tion and browsing of available packages, e.g. admin, net, utils etc. Once upon a time, these
sections (subsections, rather) existed in the form of subdirectories within the Debian archive.
Nowadays, these exist only in the “Section” header fields of packages.

4.6.2 Architectures

In the first days, the Linux kernel was only available for the Intel i386 (or greater) platforms,
and so was Debian. But when Linux became more and more popular, the kernel was ported to
other architectures, too.

The Linux 2.0 kernel supports Intel x86, DEC Alpha, SPARC, Motorola 680x0 (like Atari, Amiga
and Macintoshes), MIPS, and PowerPC. The Linux 2.2 kernel supports even more architectures,
including ARM and UltraSPARC. Since Linux supports these platforms, Debian decided that
it should, too. Therefore, Debian has ports underway; in fact, we also have ports underway
to non-Linux kernels. Aside from i386 (our name for Intel x86), there is m68k, alpha, powerpc,
sparc, hurd-i386, arm, ia64, hppa, s390, mips, mipsel and sh as of this writing.

http://www.debian.org/social_contract#guidelines
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 4. Resources for Debian Developers 20

Debian GNU/Linux 1.3 is only available as i386. Debian 2.0 shipped for i386 and m68k archi-
tectures. Debian 2.1 ships for the i386, m68k, alpha, and sparc architectures. Debian 2.2 added
support for the powerpc and arm architectures. Debian 3.0 added support of five new architec-
tures: ia64, hppa, s390, mips and mipsel.

Information for developers and users about the specific ports are available at the Debian Ports
web pages (http://www.debian.org/ports/).

4.6.3 Packages

There are two types of Debian packages, namely source and binary packages.

Source packages consist of either two or three files: a .dsc file, and either a .tar.gz file or
both an .orig.tar.gz and a .diff.gz file.

If a package is developed specially for Debian and is not distributed outside of Debian, there
is just one .tar.gz file which contains the sources of the program. If a package is distributed
elsewhere too, the .orig.tar.gz file stores the so-called upstream source code, that is the
source code that’s distributed from the upstream maintainer (often the author of the software).
In this case, the .diff.gz contains the changes made by the Debian maintainer.

The .dsc file lists all the files in the source package together with checksums (md5sums) and
some additional info about the package (maintainer, version, etc.).

4.6.4 Distributions

The directory system described in the previous chapter is itself contained within distribution
directories. Each distribution is actually contained in the pool directory in the top-level of the
Debian archive itself.

To summarize, the Debian archive has a root directory within an FIP server. For instance,
at the mirror site, ftp.us.debian.org , the Debian archive itself is contained in /debian
which is a common location (another is /pub/debian).

A distribution comprises Debian source and binary packages, and the respective Sources and
Packages index files, containing the header information from all those packages. The former
are kept in the pool/ directory, while the latter are kept in the dists/ directory of the archive
(for backwards compatibility).

Stable, testing, and unstable

There are always distributions called stable (residing in dists/stable), testing (residing in
dists/testing), and unstable (residing in dists/unstable)- This reflects the development
process of the Debian project.

Active development is done in the unstable distribution (that’s why this distribution is some-
times called the development distribution). Every Debian developer can update his or her pack-
ages in this distribution at any time. Thus, the contents of this distribution change from day

http://www.debian.org/ports/
ftp.us.debian.org

Chapter 4. Resources for Debian Developers 21

to day. Since no special effort is made to make sure everything in this distribution is working
properly, it is sometimes literally unstable.

The “testing” distribution is generated automatically by taking packages from unstable if they
satisfy certain criteria. Those criteria should ensure a good quality for packages within testing.
The update to testing is launched each day after the new packages have been installed. See
‘The testing distribution” on page 58.

After a period of development, once the release manager deems fit, the testing distribution is
frozen, meaning that the policies which control how packages move from unstable to testing are
tightened. Packages which are too buggy are removed. No changes are allowed into testing
except for bug fixes. After some time has elapsed, depending on progress, the testing distri-
bution goes into a ‘deep freeze’, when no changes are made to it except those needed for the
installation system. This is called a “test cycle”, and it can last up to two weeks. There can
be several test cycles, until the distribution is prepared for release, as decided by the release
manager. At the end of the last test cycle, the testing distribution is renamed to stable, over-
riding the old stable distribution, which is removed at that time (although it can be found at
archive.debian.org).

This development cycle is based on the assumption that the unstable distribution becomes stable
after passing a period of being in testing. Even once a distribution is considered stable, a few
bugs inevitably remain — that’s why the stable distribution is updated every now and then.
However, these updates are tested very carefully and have to be introduced into the archive
individually to reduce the risk of introducing new bugs. You can find proposed additions to
stable in the proposed-updates directory. Those packages in proposed-updates that pass
muster are periodically moved as a batch into the stable distribution and the revision level of
the stable distribution is incremented (e.g., ‘3.0" becomes ‘3.0r1’, “2.2r4” becomes “2.2r5’, and so
forth).

Note that development under unstable continues during the freeze period, since the unstable
distribution remains in place in parallel with testing.

More information about the testing distribution

Packages are usually installed into the ‘testing” distribution after they have undergone some
degree of testing in unstable.

For more details, please see the information about the testing distribution.

Experimental

The experimental distribution is a special distribution. It is not a full distribution in the same
sense as ‘stable” and “unstable” are. Instead, it is meant to be a temporary staging area for highly
experimental software where there’s a good chance that the software could break your system,
or software that’s just too unstable even for the unstable distribution (but there is a reason
to package it nevertheless). Users who download and install packages from experimental are
expected to have been duly warned. In short, all bets are off for the experimental distribution.

Chapter 4. Resources for Debian Developers 22

These are the sources.list(5) lines for experimental:
deb http://itp. Xy .debian.org/debian/ ../project/experimental main
deb-src http://ftp. Xy .debian.org/debian/ ../project/experimental main

If there is a chance that the software could do grave damage to a system, it is likely to be
better to put it into experimental. For instance, an experimental compressed file system should
probably go into experimental.

Whenever there is a new upstream version of a package that introduces new features but
breaks a lot of old ones, it should either not be uploaded, or be uploaded to experimental.
A new, beta, version of some software which uses a completely different configuration can
go into experimental, at the maintainer’s discretion. If you are working on an incompatible or
complex upgrade situation, you can also use experimental as a staging area, so that testers can
get early access.

Some experimental software can still go into unstable, with a few warnings in the description,
but that isn’t recommended because packages from unstable are expected to propagate to testing
and thus to stable. You should not be afraid to use experimental since it does not cause any pain
to the ftpmasters, the experimental packages are automatically removed once you upload the
package in unstable with a higher version number.

New software which isn’t likely to damage your system can go directly into unstable.
An alternative to experimental is to use your personal web space on people.debian.org

When uploading to unstable a package which had bugs fixed in experimental, please consider
using the option -v to dpkg-buildpackage to finally get them closed.

4.6.5 Release code names

Every released Debian distribution has a code name: Debian 1.1 is called ‘buzz’; Debian 1.2,
‘rex’; Debian 1.3, ‘bo’; Debian 2.0, ‘hamm’; Debian 2.1, ‘slink’; Debian 2.2, “potato’; and Debian
3.0, ‘woody’. There is also a “pseudo-distribution”, called ‘sid’, which is the current “unstable’
distribution; since packages are moved from ‘unstable’ to ‘testing” as they approach stability,
‘sid’ itself is never released. As well as the usual contents of a Debian distribution, ‘sid” con-
tains packages for architectures which are not yet officially supported or released by Debian.
These architectures are planned to be integrated into the mainstream distribution at some fu-
ture date.

Since Debian has an open development model (i.e., everyone can participate and follow the
development) even the ‘unstable” and ‘testing” distributions are distributed to the Internet
through the Debian FTP and HTTP server network. Thus, if we had called the directory which
contains the release candidate version ‘testing’, then we would have to rename it to ‘stable’
when the version is released, which would cause all FTP mirrors to re-retrieve the whole dis-
tribution (which is quite large).

On the other hand, if we called the distribution directories Debian-x.y from the beginning,
people would think that Debian release x.y is available. (This happened in the past, where a

Chapter 4. Resources for Debian Developers 23

CD-ROM vendor built a Debian 1.0 CD-ROM based on a pre-1.0 development version. That’s
the reason why the first official Debian release was 1.1, and not 1.0.)

Thus, the names of the distribution directories in the archive are determined by their code
names and not their release status (e.g., ‘slink’). These names stay the same during the de-
velopment period and after the release; symbolic links, which can be changed easily, indicate
the currently released stable distribution. That’s why the real distribution directories use the
code names, while symbolic links for stable, testing, and unstable point to the appropriate release
directories.

4.7 Debian mirrors

The various download archives and the web site have several mirrors available in order to re-
lieve our canonical servers from heavy load. In fact, some of the canonical servers aren’t public
— a first tier of mirrors balances the load instead. That way, users always access the mirrors
and get used to using them, which allows Debian to better spread its bandwidth requirements
over several servers and networks, and basically makes users avoid hammering on one pri-
mary location. Note that the first tier of mirrors is as up-to-date as it can be since they update
when triggered from the internal sites (we call this “push mirroring”).

All the information on Debian mirrors, including a list of the available public FTP/HTTP
servers, can be found at http://www.debian.org/mirror/ . This useful page also includes
information and tools which can be helpful if you are interested in setting up your own mirror,
either for internal or public access.

Note that mirrors are generally run by third-parties who are interested in helping Debian. As
such, developers generally do not have accounts on these machines.

4.8 The Incoming system

The Incoming system is responsible for collecting updated packages and installing them in
the Debian archive. It consists of a set of directories and scripts that are installed both on
ftp-master.debian.org and non-us.debian.org

Packages are uploaded by all the maintainers into a directory called UploadQueue . This di-
rectory is scanned every few minutes by a daemon called queued , *.command -files are ex-
ecuted, and remaining and correctly signed *.changes -files are moved together with their
corresponding files to the unchecked directory. This directory is not visible for most Devel-
opers, as ftp-master is restricted; it is scanned every 15 minutes by the katie script, which
verifies the integrity of the uploaded packages and their cryptographic signatures. If the pack-
age is considered ready to be installed, it is moved into the accepted directory. If this is the
first upload of the package (or it has new binary packages), it is moved to the new directory,
where it waits for approval by the ftpmasters. If the package contains files to be installed “by
hand” it is moved to the byhand directory, where it waits for manual installation by the ftp-

http://www.debian.org/mirror/

Chapter 4. Resources for Debian Developers 24

masters. Otherwise, if any error has been detected, the package is refused and is moved to the
reject directory.

Once the package is accepted, the system sends a confirmation mail to the maintainer and
closes all the bugs marked as fixed by the upload, and the auto-builders may start recompiling
it. The package is now publicly accessible at http://incoming.debian.org/ until it is
really installed in the Debian archive. This happens only once a day (and is also called “dinstall
run’ for historical reasons); the package is then removed from incoming and installed in the
pool along with all the other packages. Once all the other updates (generating new Packages
and Sources index files for example) have been made, a special script is called to ask all the
primary mirrors to update themselves.

The archive maintenance software will also send the OpenPGP/GnuPG signed .changes
file that you uploaded to the appropriate mailing lists. If a package is released with the
Distribution: set to ‘stable’, the announcement is sent to <debian-changes@lists.
debian.org> . If a package is released with Distribution: set to “unstable’ or ‘experimen-
tal’, the announcement will be posted to <debian-devel-changes@lists.debian.org>

instead.

Though ftp-master is restricted, a copy of the installation is available to all developers on
merkel.debian.org

4.9 Package information

49.1 On the web

Each package has several dedicated web pages. http://packages.debian.org/ package-name
displays each version of the package available in the various distributions. Each version links

to a page which provides information, including the package description, the dependencies,

and package download links.

The bug tracking system tracks bugs for each package. You can view the bugs of a given
package at the URL http://bugs.debian.org/ package-name .

4.9.2 The madison utility

madison is a command-line utility that is available on both ftp-master.debian.org and
non-us.debian.org , and on the mirror on merkel.debian.org . It uses a single argument
corresponding to a package name. In result it displays which version of the package is available
for each architecture and distribution combination. An example will explain it better.

$ madison libdbd-mysql-perl

libdbd-mysql-perl | 1.2202-4 | stable | source, alpha, arm, i386, m68k, powerpc, spa
libdbd-mysql-perl | 1.2216-2 | testing | source, arm, hppa, i386, ia64, m68k, mips, mi
libdbd-mysql-perl | 1.2216-2.0.1 | testing | alpha

libdbd-mysql-perl | 1.2219-1 | unstable | source, alpha, arm, hppa, 1386, ia64, m68k, n

http://incoming.debian.org/

Chapter 4. Resources for Debian Developers 25

In this example, you can see that the version in unstable differs from the version in testing and
that there has been a binary-only NMU of the package for the alpha architecture. Each version
of the package has been recompiled on most of the architectures.

4.10 The Package Tracking System

The Package Tracking System (PTS) is an email-based tool to track the activity of a source
package. This really means that you can get the same emails that the package maintainer gets,
simply by subscribing to the package in the PTS.

Each email sent through the PTS is classified under one of the keywords listed below. This will
let you select the mails that you want to receive.

By default you will get:

bts All the bug reports and following discussions.

bts-control The email notifications from <control@bugs.debian.org> about bug re-
port status changes.

upload-source The email notification from katie when an uploaded source package is
accepted.

katie-other Other warning and error emails from katie (such as an override disparity for
the section and/or the priority field).

default ~ Any non-automatic email sent to the PTS by people who wanted to con-
tact the subscribers of the package. This can be done by sending mail to
sourcepackage @packages.ga.debian.org . In order to prevent spam, all messages
sent to these addresses must contain the X-PTS-Approved header with a non-empty
value.

summary (This is a planned expansion.) The regular summary emails about the package’s
status (bug statistics, porting overview, progression in testing, ...).

You can also decide to receive additional information:

upload-binary The email notification from katie when an uploaded binary package is
accepted. In other words, whenever a build daemon or a porter uploads your package
for another architecture, you can get an email to track how your package gets recompiled
for all architectures.

cvs CVS commit notifications, if the package has a CVS repository and the maintainer has set
up forwarding commit notifications to the PTS.

ddtp Translations of descriptions or debconf templates submitted to the Debian Description
Translation Project.

Chapter 4. Resources for Debian Developers 26

4.10.1 The PTS email interface

You can control your subscription(s) to the PTS by sending various commands to <pts@qa.
debian.org>

subscribe <sourcepackage> [<email>] Subscribes email to communications related
to the source package sourcepackage. Sender address is used if the second argument is
not present. If sourcepackage is not a valid source package, you'll get a warning. How-
ever if it’s a valid binary package, the PTS will subscribe you to the corresponding source
package.

unsubscribe <sourcepackage> [<email>] Removes a previous subscription to the
source package sourcepackage using the specified email address or the sender address if
the second argument is left out.

which [<email>] Lists all subscriptions for the sender or the email address optionally spec-
ified.
keyword [<email>] Tells you the keywords that you are accepting. For an explanation of

keywords, see above. Here’s a quick summary:

* bts : mails coming from the Debian Bug Tracking System

* bts-control : reply to mails sent to <control@bugs.debian.org>
* summary: automatic summary mails about the state of a package
¢ cvs : notification of CVS commits

* ddtp : translations of descriptions and debconf templates

¢ upload-source :announce of a new source upload that has been accepted
¢ upload-binary : announce of a new binary-only upload (porting)
e katie-other : other mails from ftpmasters (override disparity, etc.)

e default : all the other mails (those which aren’t “automatic”)

keyword <sourcepackage> [<email>] Same as the previous item but for the given
source package, since you may select a different set of keywords for each source package.

keyword [<email>] {+|-|=} <list of keywords> Accept (+) or refuse (-) mails clas-
sified under the given keyword(s). Define the list (=) of accepted keywords.

keyword <sourcepackage> [<email>] {+|-|=} <list of keywords> Same as
previous item but overrides the keywords list for the indicated source package.

quit | thanks | -- Stops processing commands. All following lines are ignored by the
bot.

Chapter 4. Resources for Debian Developers 27

4.10.2 Filtering PTS mails

Once you are subscribed to a package, you will get the mails sent to
sourcepackage @packages.ga.debian.org . Those mails have special headers ap-
pended to let you filter them in a special mailbox (e.g. with procmail). The added headers
are X-Loop , X-PTS-Package , X-PTS-Keyword and X-Unsubscribe

Here is an example of added headers for a source upload notification on the dpkg package:

X-Loop: dpkg@packages.qa.debian.org

X-PTS-Package: dpkg

X-PTS-Keyword: upload-source

X-Unsubscribe: echo ’unsubscribe dpkg’ | mail pts@ga.debian.org

4.10.3 Forwarding CVS commits in the PTS

If you use a publicly accessible CVS repository for maintaining your Debian package, you
may want to forward the commit notification to the PTS so that the subscribers (and possible
co-maintainers) can closely follow the package’s evolution.

Once you set up the CVS repository to generate commit notifications, you just have to make
sure it sends a copy of those mails to sourcepackage _cvs@packages.qa.debian.org
Only the people who accept the cus keyword will receive these notifications.

4104 The PTS web interface

The PTS has a web interface at http://packages.qa.debian.org/ that puts together a lot
of information about each source package. It features many useful links (BTS, QA stats, contact
information, DDTP translation status, buildd logs) and gathers much more information from
various places (30 latest changelog entries, testing status, ...). It’s a very useful tool if you
want to know what’s going on with a specific source package. Furthermore there’s a form that
allows easy subscription to the PTS via email.

You can jump directly to the web page concerning a specific source package with a URL like
http://packages.ga.debian.org/ sourcepackage

This web interface has been designed like a portal for the development of packages: you can
add custom content on your packages’ pages. You can add “static information” (news items
that are meant to stay available indefinitely) and news items in the “latest news” section.

Static news items can be used to indicate:

¢ the availability of a project hosted on Alioth for co-maintaining the package
¢ alink to the upstream web site

¢ alink to the upstream bug tracker

http://packages.qa.debian.org/

Chapter 4. Resources for Debian Developers 28

¢ the existence of an IRC channel dedicated to the software

¢ any other available resource that could be useful in the maintenance of the package
Usual news items may be used to announce that:

* beta packages are available for testing

¢ final packages are expected for next week

¢ the packaging is about to be redone from scratch

* backports are available

¢ the maintainer is on vacation (if they wish to publish this information)
¢ a NMU is being worked on

¢ something important will affect the package

Both kinds of news are generated in a similar manner: you just have to send an email either
to <pts-static-news@ga.debian.org> or to <pts-news@qa.debian.org> . The mail
should indicate which package is concerned by having the name of the source package in a
X-PTS-Package mail header or in a Package pseudo-header (like the BTS reports). If a URL
is available in the X-PTS-Url mail header or in the Url pseudo-header, then the result is a
link to that URL instead of a complete news item.

Here are a few examples of valid mails used to generate news items in the PTS. The first one
adds a link to the cvsweb interface of debian-cd in the “Static information” section:

From: Raphael Hertzog <hertzog@debian.org>
To: pts-static-news@qa.debian.org
Subject: Browse debian-cd CVS repository with cvsweb

Package: debian-cd
Url: http://cvs.debian.org/debian-cd/

The second one is an announcement sent to a mailing list which is also sent to the PTS so that
it is published on the PTS web page of the package. Note the use of the BCC field to avoid
answers sent to the PTS by mistake.

From: Raphael Hertzog <hertzog@debian.org>
To: debian-gtk-gnome@lists.debian.org

Bce: pts-news@qa.debian.org

Subject: Galeon 2.0 backported for woody
X-PTS-Package: galeon

Chapter 4. Resources for Debian Developers 29

Hello gnomers!

I'm glad to announce that galeon has been backported for woody. You'll find
everything here:

Think twice before adding a news item to the PTS because you won't be able to remove it later
and you won't be able to edit it either. The only thing that you can do is send a second news
item that will deprecate the information contained in the previous one.

4.11 Developer’s packages overview

A QA (quality assurance) web portal is available at http://qa.debian.org/developer.

php which displays a table listing all the packages of a single developer (including those where
the party is listed as a co-maintainer). The table gives a good summary about the developer’s
packages: number of bugs by severity, list of available versions in each distribution, testing
status and much more including links to any other useful information.

Itis a good idea to look up your own data regularly so that you don’t forget any open bug, and
so that you don’t forget which packages are under your responsibility.

4.12 Debian *Forge: Alioth

Alioth is a fairly new Debian service, based on a slightly modified version of the GForge soft-
ware (which evolved from SourceForge). This software offers developers access to easy-to-use
tools such as bug trackers, patch manager, project/task managers, file hosting services, mailing
lists, CVS repositories etc. All these tools are managed via a web interface.

It is intended to provide facilities to free software projects backed or led by Debian, facilitate
contributions from external developers to projects started by Debian, and help projects whose
goals are the promotion of Debian or its derivatives.

For more information please visit http://alioth.debian.org/

http://qa.debian.org/developer.php
http://qa.debian.org/developer.php
http://alioth.debian.org/

Chapter 4. Resources for Debian Developers

30

31

Chapter 5

Managing Packages

This chapter contains information related to creating, uploading, maintaining, and porting
packages.

5.1 New packages

If you want to create a new package for the Debian distribution, you should first check
the Work-Needing and Prospective Packages (WNPP) (http://www.debian.org/devel/

wnpp/) list. Checking the WNPP list ensures that no one is already working on packag-
ing that software, and that effort is not duplicated. Read the WNPP web pages (http:
/lwww.debian.org/devel/wnpp/) for more information.

Assuming no one else is already working on your prospective package, you must then submit a
bug report (‘Bug reporting” on page 87) against the pseudo-package wnpp describing your plan
to create a new package, including, but not limiting yourself to, a description of the package,
the license of the prospective package, and the current URL where it can be downloaded from.

You should set the subject of the bug to “ITP: foo — short description”, substituting the name
of the new package for foo. The severity of the bug report must be set to wishlist. If you
feel it’s necessary, send a copy to <debian-devel@lists.debian.org> by putting the
address in the X-Debbugs-CC: header of the message (no, don’t use CC:, because that way
the message’s subject won’t indicate the bug number).

Please include a Closes: bug# nnnnn entry in the changelog of the new package in order
for the bug report to be automatically closed once the new package is installed in the archive
(see "When bugs are closed by new uploads’ on page 41).

There are a number of reasons why we ask maintainers to announce their intentions:
¢ It helps the (potentially new) maintainer to tap into the experience of people on the list,
and lets them know if anyone else is working on it already.
¢ It lets other people thinking about working on the package know that there already is a
volunteer, so efforts may be shared.

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/wnpp/

Chapter 5. Managing Packages 32

¢ It lets the rest of the maintainers know more about the package than the one
line description and the usual changelog entry “Initial release” that gets posted to
debian-devel-changes

¢ It is helpful to the people who live off unstable (and form our first line of testers). We
should encourage these people.

¢ The announcements give maintainers and other interested parties a better feel of what is
going on, and what is new, in the project.

5.2 Recording changes in the package

Changes that you make to the package need to be recorded in the debian/changelog . These
changes should provide a concise description of what was changed, why (if it’s in doubt), and
note if any bugs were closed. They also record when the package was completed. This file
will be installed in /usr/share/doc/ package /changelog.Debian.gz , or /usr/share
/doc/ package /changelog.gz for native packages.

The debian/changelog file conforms to a certain structure, with a number of different fields.
One field of note, the distribution, is described in ‘Picking a distribution” on page 34. More
information about the structure of this file can be found in the Debian Policy section titled
“debian/changelog ”

Changelog entries can be used to automatically close Debian bugs when the package is in-
stalled into the archive. See “‘When bugs are closed by new uploads” on page 41.

It is conventional that the changelog entry of a package that contains a new upstream version
of the software looks like this:

* new upstream version
There are tools to help you create entries and finalize the changelog for release — see
‘devscripts ” on page 102 and ‘dpkg-dev-el ’ on page 103.
See also “Best practices for debian/changelog “ on page 70.

5.3 Testing the package

Before you upload your package, you should do basic testing on it. At a minimum, you should
try the following activities (you'll need to have an older version of the same Debian package
around):

¢ Install the package and make sure the software works, or upgrade the package from an
older version to your new version if a Debian package for it already exists.

Chapter 5. Managing Packages 33

¢ Run lintian over the package. You can run lintian as follows: lintian -v
package-version .changes . This will check the source package as well as the binary
package. If you don’t understand the output that lintian ~ generates, try adding the -i
switch, which will cause lintian to output a very verbose description of the problem.

Normally, a package should not be uploaded if it causes lintian to emit errors (they will
start with E).

For more information on lintian ~ , see ‘lintian " on page 98.

¢ Optionally run ‘debdiff " on page 99 to analyze changes from an older version, if one
exists.

¢ Downgrade the package to the previous version (if one exists) — this tests the postrm
and prerm scripts.

* Remove the package, then reinstall it.

5.4 Layout of the source package
There are two types of Debian source packages:

¢ the so-called native packages, where there is no distinction between the original sources
and the patches applied for Debian

¢ the (more common) packages where there’s an original source tarball file accompanied
by another file that contains the patches applied for Debian

For the native packages, the source package includes a Debian source control file (.dsc)
and the source tarball (.tar.gz). A source package of a non-native package includes a De-
bian source control file, the original source tarball (.orig.tar.gz) and the Debian patches
(.diff.gz).

Whether a package is native or not is determined when it is built by
dpkg-buildpackage(1) . The rest of this section relates only to non-native packages.

The first time a version is uploaded which corresponds to a particular upstream version, the
original source tar file should be uploaded and included in the .changes file. Subsequently,
this very same tar file should be used to build the new diffs and .dsc files, and will not need
to be re-uploaded.

By default, dpkg-genchanges and dpkg-buildpackage will include the original source
tar file if and only if the Debian revision part of the source version number is 0 or 1, indicating
a new upstream version. This behavior may be modified by using -sa to always include it or
-sd to always leave it out.

If no original source is included in the upload, the original source tar-file used by
dpkg-source when constructing the .dsc file and diff to be uploaded must be byte-for-byte
identical with the one already in the archive.

Chapter 5. Managing Packages 34

5.5 Picking a distribution

Each upload needs to specify which distribution the package is intended for. The package
build process extracts this information from the first line of the debian/changelog file and
places it in the Distribution field of the .changes file.

There are several possible values for this field: ‘stable’, “unstable’, “testing-proposed-updates’
and ‘experimental’. Normally, packages are uploaded into unstable.

Actually, there are two other possible distributions: ‘stable-security” and ‘testing-security’, but
read ‘Handling security-related bugs’ on page 42 for more information on those.

It is not possible to upload a package into several distributions at the same time.

5.5.1 Special case: uploads to the stable distribution

Uploading to stable means that the package will be placed into the
stable-proposed-updates directory of the Debian archive for further testing before
it is actually included in stable.

Extra care should be taken when uploading to stable. Basically, a package should only be up-
loaded to stable if one of the following happens:

¢ a truly critical functionality problem
¢ the package becomes uninstallable

* areleased architecture lacks the package

In the past, uploads to stable were used to address security problems as well. However, this
practice is deprecated, as uploads used for Debian security advisories are automatically copied
to the appropriate proposed-updates archive when the advisory is released. See ‘Handling
security-related bugs’ on page 42 for detailed information on handling security problems.

Changing anything else in the package that isn’t important is discouraged, because even trivial
fixes can cause bugs later on.

Packages uploaded to stable need to be compiled on systems running stable, so that their de-
pendencies are limited to the libraries (and other packages) available in stable; for example, a
package uploaded to stable that depends on a library package that only exists in unstable will
be rejected. Making changes to dependencies of other packages (by messing with Provides
or shlibs files), possibly making those other packages uninstallable, is strongly discouraged.

The Release Team (which can be reached at <debian-release@lists.debian.org>) will
regularly evaluate the uploads in stable-proposed-updates and decide if your package can be
included in stable. Please be clear (and verbose, if necessary) in your changelog entries for
uploads to stable, because otherwise the package won’t be considered for inclusion.

It’s best practice to speak with the stable release manager before uploading to stable/stable-
proposed-updates, so that the uploaded package fits the needs of the next point release.

Chapter 5. Managing Packages 35

5.5.2 Special case: uploads to testing/testing-proposed-updates

Please see the information in the testing section for details.

5.6 Uploading a package

5.6.1 Uploading to ftp-master

To upload a package, you should upload the files (including the signed changes and dsc-file)
with anonymous ftp to ftp-master.debian.org in the directory /pub/UploadQueue/
To get the files processed there, they need to be signed with a key in the debian keyring.

Please note that you should transfer the changes file last. Otherwise, your upload may be
rejected because the archive maintenance software will parse the changes file and see that not
all files have been uploaded.

Note: Do not upload to ftp-master cryptographic packages which belong to contrib or non-
free. Uploads of such software should go to non-us (see ‘Uploading to non-US’ on this
page). Furthermore packages containing code that is patent-restricted by the United States
government cannot be uploaded to ftp-master ; depending on the case they may still be
uploaded to non-US/non-free (it’s in non-free because of distribution issues and not be-
cause of the license of the software). If you can’t upload it to ftp-master , then neither can
you upload it to backup queues that finally also end up on ftp-master . If you are not sure
whether U.S. patent controls or cryptographic controls apply to your package, post a message
to <debian-devel@lists.debian.org> and ask.

You may also find the Debian packages ‘dupload " on page 101 or ‘dput “ on page 101 useful
when uploading packages. These handy programs help automate the process of uploading
packages into Debian.

For removing packages, please see the README file in that ftp directory, and the Debian pack-
age ‘dcut ” on page 102.

5.6.2 Uploading to non-US

Note: non-us is currently not processed any more.

As discussed above, export controlled software should not be uploaded to ftp-master . In-
stead, upload the package with anonymous FTP to non-us.debian.org , placing the files
in /pub/UploadQueue/ (again, both ‘dupload ’ on page 101 and “dput " on page 101 can do
this for you if invoked properly).

Note that U.S. residents or citizens are subject to restrictions on export of cryptographic soft-
ware. As of this writing, U.S. citizens are allowed to export some cryptographic software, sub-
ject to notification rules by the U.S. Department of Commerce. However, this restriction has
been waived for software which is already available outside the U.S. Therefore, any crypto-
graphic software which belongs in the main section of the Debian archive and does not depend

ftp-master.debian.org
non-us.debian.org

Chapter 5. Managing Packages 36

on any package outside of main (e.g., does not depend on anything in non-US/main) can be
uploaded to ftp-master or its queues, described above.

Debian policy does not prevent upload to non-US by U.S. residents or citizens, but care should
be taken in doing so. It is recommended that developers take all necessary steps to ensure
that they are not breaking current US law by doing an upload to non-US, including consulting a
lawyer.

For packages in mnon-US/main, non-US/contrib, developers should at least follow the
procedure outlined by the US Government (http://www.bxa.doc.gov/Encryption/
PubAvailEncSourceCodeNofify.html)- Maintainers of non-US/non-free packages
should further consult the rules on notification of export (http://www.bxa.doc.gov/
Encryption/) of non-free software.

This section is for information only and does not constitute legal advice. Again, it is strongly
recommended that U.S. citizens and residents consult a lawyer before doing uploads to non-
Us.

5.6.3 Delayed uploads

Delayed uploads are done for the moment via the delayed queue at gluck. The upload-
directory is gluck:~tfheen/DELAYED/[012345678]-day . 0O-day is uploaded approxi-
mately one hour before dinstall runs.

With a fairly recent dput, this section

[ttheen_delayed]
method = scp

fgdn = gluck.debian.org
incoming = ~tfheen

in ~/.dput.cf should work fine for uploading to the DELAYED queue.

Note: Since this upload queue goes to ftp-master , the prescription found in “Uploading to
ftp-master ’ on the preceding page applies here as well.

5.6.4 Security uploads

Do NOT upload a package to the security upload queue (oldstable-security, stable-security,
etc.) without prior authorization from the security team. If the package does not exactly meet
the team’s requirements, it will cause many problems and delays in dealing with the unwanted
upload. For details, please see section ‘Handling security-related bugs” on page 42.

5.6.5 Other upload queues

The scp queues on ftp-master, non-us, and security are mostly unusable due to the login re-
strictions on those hosts.

http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/PubAvailEncSourceCodeNofify.html
http://www.bxa.doc.gov/Encryption/
http://www.bxa.doc.gov/Encryption/
gluck:~tfheen/DELAYED/[012345678]-day

Chapter 5. Managing Packages 37

The anonymous queues on ftp.uni-erlangen.de and ftp.uk.debian.org are currently down.
Work is underway to resurrect those.

The queues on master.debian.org, samosa.debian.org, master.debian.orjp, and
ftp.chiark.greenend.org.uk are down permanently, and will not be resurrected. The queue in
Japan will be replaced with a new queue on hp.debian.or.jp some day.

For the time being, the anonymous ftp queue on auric.debian.org (the former ftp-master)
works, but it is deprecated and will be removed at some point in the future.

5.6.6 Notification that a new package has been installed

The Debian archive maintainers are responsible for handling package uploads. For the most
part, uploads are automatically handled on a daily basis by the archive maintenance tools,
katie . Specifically, updates to existing packages to the “unstable” distribution are handled
automatically. In other cases, notably new packages, placing the uploaded package into the
distribution is handled manually. When uploads are handled manually, the change to the
archive may take up to a month to occur. Please be patient.

In any case, you will receive an email notification indicating that the package has been added
to the archive, which also indicates which bugs will be closed by the upload. Please examine
this notification carefully, checking if any bugs you meant to close didn’t get triggered.

The installation notification also includes information on what section the package was in-
serted into. If there is a disparity, you will receive a separate email notifying you of that. Read
on below.

Note that if you upload via queues, the queue daemon software will also send you a notifica-
tion by email.

5.7 Specifying the package section, subsection and priority

The debian/control file’s Section and Priority fields do not actually specify where the
tile will be placed in the archive, nor its priority. In order to retain the overall integrity of the
archive, it is the archive maintainers who have control over these fields. The values in the
debian/control file are actually just hints.

The archive maintainers keep track of the canonical sections and priorities for packages in the
override file. If there is a disparity between the override file and the package’s fields as indicated
in debian/control , then you will receive an email noting the divergence when the package
is installed into the archive. You can either correct your debian/control file for your next
upload, or else you may wish to make a change in the override file.

To alter the actual section that a package is put in, you need to first make sure that the debian
/control in your package is accurate. Next, send an email <override-change@debian.
org> or submit a bug against ftp.debian.org requesting that the section or priority for

Chapter 5. Managing Packages 38

your package be changed from the old section or priority to the new one. Be sure to explain
your reasoning.

For more information about override files, see dpkg-scanpackages(8) and http://www.
debian.org/Bugs/Developer#maintincorrect

Note that the Section field describes both the section as well as the subsection, which are
described in ‘Sections” on page 19. If the section is “main”, it should be omitted. The list of
allowable subsections can be found in http://www.debian.org/doc/debian-policy/
ch-archive.html#s-subsections

5.8 Handling bugs

Every developer has to be able to work with the Debian bug tracking system (http://www.
debian.org/Bugs/). This includes knowing how to file bug reports properly (see ‘Bug re-
porting” on page 87), how to update them and reorder them, and how to process and close
them.

The bug tracking system’s features are described in the BTS documentation for developers
(http://www.debian.org/Bugs/Developer). This includes closing bugs, sending fol-
lowup messages, assigning severities and tags, marking bugs as forwarded, and other issues.

Operations such as reassigning bugs to other packages, merging separate bug reports about
the same issue, or reopening bugs when they are prematurely closed, are handled using the
so-called control mail server. All of the commands available in this server are described in the
BTS control server documentation (http://www.debian.org/Bugs/server-control).

5.8.1 Monitoring bugs

If you want to be a good maintainer, you should periodically check the Debian bug track-
ing system (BTS) (http://www.debian.org/Bugs/) for your packages. The BTS con-
tains all the open bugs against your packages. You can check them by browsing this page:
http://bugs.debian.org/ yourlogin ~ @debian.org

Maintainers interact with the BTS via email addresses at bugs.debian.org . Documentation
on available commands can be found at http://www.debian.org/Bugs/ , or, if you have
installed the doc-debian package, you can look at the local files /usr/share/doc/debian

/bug-*

Some find it useful to get periodic reports on open bugs. You can add a cron job such as the
following if you want to get a weekly email outlining all the open bugs against your packages:

ask for weekly reports of bugs in my packages

0 17 * * fri echo "index maint address " | mail request@bugs.debian.org

Replace address with your official Debian maintainer address.

http://www.debian.org/Bugs/Developer#maintincorrect
http://www.debian.org/Bugs/Developer#maintincorrect
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/doc/debian-policy/ch-archive.html#s-subsections
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/Developer
http://www.debian.org/Bugs/server-control
http://www.debian.org/Bugs/
http://www.debian.org/Bugs/

Chapter 5. Managing Packages 39

5.8.2 Responding to bugs

When responding to bugs, make sure that any discussion you have about bugs is sent both
to the original submitter of the bug, and to the bug itself (e.g., <123@bugs.debian.org>).
If you're writing a new mail and you don’t remember the submitter email address, you can
use the <123-submitter@bugs.debian.org> email to contact the submitter and to record
your mail within the bug log (that means you don’t need to send a copy of the mail to <123@
bugs.debian.org>).

If you get a bug which mentions “FIBFS”, that means “Fails to build from source”. Porters
frequently use this acronym.

Once you've dealt with a bug report (e.g. fixed it), mark it as done (close it) by sending an
explanation message to <123-done@bugs.debian.org> . If you're fixing a bug by changing
and uploading the package, you can automate bug closing as described in “When bugs are
closed by new uploads’ on page 41.

You should never close bugs via the bug server close command sent to <control@bugs.
debian.org> . If you do so, the original submitter will not receive any information about
why the bug was closed.

5.8.3 Bug housekeeping

As a package maintainer, you will often find bugs in other packages or have bugs reported
against your packages which are actually bugs in other packages. The bug tracking sys-
tem’s features are described in the BTS documentation for Debian developers (http://www.
debian.org/Bugs/Developer). Operations such as reassigning, merging, and tagging bug
reports are described in the BTS control server documentation (http://www.debian.org/
Bugs/server-control). This section contains some guidelines for managing your own
bugs, based on the collective Debian developer experience.

Filing bugs for problems that you find in other packages is one of the “civic obligations” of
maintainership, see ‘Bug reporting” on page 87 for details. However, handling the bugs in
your own packages is even more important.

Here’s a list of steps that you may follow to handle a bug report:

1 Decide whether the report corresponds to a real bug or not. Sometimes users are just
calling a program in the wrong way because they haven’t read the documentation. If
you diagnose this, just close the bug with enough information to let the user correct their
problem (give pointers to the good documentation and so on). If the same report comes
up again and again you may ask yourself if the documentation is good enough or if the
program shouldn’t detect its misuse in order to give an informative error message. This
is an issue that may need to be brought up with the upstream author.

If the bug submitter disagrees with your decision to close the bug, they may reopen
it until you find an agreement on how to handle it. If you don’t find any, you may
want to tag the bug wontfix to let people know that the bug exists but that it won’t be

http://www.debian.org/Bugs/Developer
http://www.debian.org/Bugs/Developer
http://www.debian.org/Bugs/server-control
http://www.debian.org/Bugs/server-control

Chapter 5. Managing Packages 40

corrected. If this situation is unacceptable, you (or the submitter) may want to require
a decision of the technical committee by reassigning the bug to tech-ctte (you may
use the clone command of the BTS if you wish to keep it reported against your package).
Before doing so, please read the recommended procedure (http://www.debian.org/
devel/tech-ctte).

2 If the bug is real but it’s caused by another package, just reassign the bug to the right
package. If you don’t know which package it should be reassigned to, you should ask
for help on IRC or on <debian-devel@lists.debian.org> . Please make sure that
the maintainer(s) of the package the bug is reassigned to know why you reassigned it.

Sometimes you also have to adjust the severity of the bug so that it matches our definition
of the severity. That’s because people tend to inflate the severity of bugs to make sure
their bugs are fixed quickly. Some bugs may even be dropped to wishlist severity when
the requested change is just cosmetic.

3 If the bug is real but the same problem has already been reported by someone else, then
the two relevant bug reports should be merged into one using the merge command of
the BTS. In this way, when the bug is fixed, all of the submitters will be informed of this.
(Note, however, that emails sent to one bug report’s submitter won’t automatically be
sent to the other report’s submitter.) For more details on the technicalities of the merge
command and its relative, the unmerge command, see the BTS control server documen-
tation.

4 The bug submitter may have forgotten to provide some information, in which case you
have to ask them the required information. You may use the moreinfo tag to mark the
bug as such. Moreover if you can’t reproduce the bug, you tag it unreproducible
Anyone who can reproduce the bug is then invited to provide more information on how
to reproduce it. After a few months, if this information has not been sent by someone,
the bug may be closed.

5 If the bug is related to the packaging, you just fix it. If you are not able to fix it your-
self, then tag the bug as help . You can also ask for help on <debian-devel@Iists.
debian.org> or <debian-ga@lists.debian.org> . If it's an upstream problem,
you have to forward it to the upstream author. Forwarding a bug is not enough, you
have to check at each release if the bug has been fixed or not. If it has, you just close it,
otherwise you have to remind the author about it. If you have the required skills you can
prepare a patch that fixes the bug and that you send at the same time to the author. Make
sure to send the patch to the BTS and to tag the bug as patch .

6 If you have fixed a bug in your local copy, or if a fix has been committed to the CVS
repository, you may tag the bug as pending to let people know that the bug is corrected
and that it will be closed with the next upload (add the closes: in the changelog).
This is particularly useful if you are several developers working on the same package.

7 Once a corrected package is available in the unstable distribution, you can close the bug.
This can be done automatically, read ‘When bugs are closed by new uploads” on the
facing page.

http://www.debian.org/devel/tech-ctte
http://www.debian.org/devel/tech-ctte

Chapter 5. Managing Packages 41

5.8.4 When bugs are closed by new uploads

As bugs and problems are fixed your packages, it is your responsibility as the package main-
tainer to close the bug. However, you should not close the bug until the package which fixes
the bug has been accepted into the Debian archive. Therefore, once you get notification that
your updated package has been installed into the archive, you can and should close the bug in
the BTS.

However, it’s possible to avoid having to manually close bugs after the upload — just list
the fixed bugs in your debian/changelog file, following a certain syntax, and the archive
maintenance software will close the bugs for you. For example:

acme-cannon (3.1415) unstable; urgency=low

* Frobbed with options (closes: Bug#98339)

* Added safety to prevent operator dismemberment, closes: bug#98765,
bug#98713, #98714.

* Added man page. Closes: #98725.

Technically speaking, the following Perl regular expression describes how bug closing changel-
ogs are identified:

[closes:\s*(?:bug)?\#\s*\d+(?:\s*(?:bug) ?\#\s*\d+)*/ig

We prefer the closes: # XXXsyntax, as it is the most concise entry and the easiest to inte-
grate with the text of the changelog

If an upload is identified as Non-maintainer upload (NMU) (and that is the case if the name
of the person who commits this change is not exactly the same as any one of Maintainer
or Uploader, except if the maintainer is the qa group), than the bug is only tagged fixed
instead of being closed. If a maintainer upload is targetted to experimental, than the tag
fixed-in-experimental is added to the bug; for NMU s, the tag fixed is used. (The spe-
cial rule for experimental is expected to change as soon as version-tracking is added to the bug
tracking system.)

If you happen to mistype a bug number or forget a bug in the changelog entries, don’t hesitate
to undo any damage the error caused. To reopen wrongly closed bugs, send an reopen XXX
command to the bug tracking system’s control address, <control@bugs.debian.org>

To close any remaining bugs that were fixed by your upload, email the .changes file to
<XXX-done@bugs.debian.org> , where XXX is your bug number.

Bear in mind that it is not obligatory to close bugs using the changelog as described above.
If you simply want to close bugs that don’t have anything to do with an upload you made,
do it by emailing an explanation to <XXX-done@bugs.debian.org> . Do not close bugs in
the changelog entry of a version if the changes in that version of the package don’t have any
bearing on the bug.

For general information on how to write your changelog entries, see ‘Best practices for debian
/changelog " on page 70.

Chapter 5. Managing Packages 42

5.8.5 Handling security-related bugs

Due to their sensitive nature, security-related bugs must be handled carefully. The Debian
Security Team exists to coordinate this activity, keeping track of outstanding security prob-
lems, helping maintainers with security problems or fix them themselves, sending security
advisories, and maintaining security.debian.org.

When you become aware of a security-related bug in a Debian package, whether or not you
are the maintainer, collect pertinent information about the problem, and promptly contact the

security team at <team@security.debian.org> as soon as possible. DO NOT UPLOAD
any packages for stable; the security team will do that. Useful information includes, for exam-
ple:

¢ What versions of the package are known to be affected by the bug. Check each version
that is present in a supported Debian release, as well as testing and unstable.

The nature of the fix, if any is available (patches are especially helpful)

Any fixed packages that you have prepared yourself (send only the .diff.gz and .dsc
files and read ‘Preparing packages to address security issues’ on the facing page first)

¢ Any assistance you can provide to help with testing (exploits, regression testing, etc.)
Any information needed for the advisory (see ‘Security Advisories” on the next page)

Confidentiality

Unlike most other activities within Debian, information about security issues must sometimes
be kept private for a time. This allows software distributors to coordinate their disclosure in
order to minimize their users” exposure. Whether this is the case depends on the nature of the
problem and corresponding fix, and whether it is already a matter of public knowledge.

There are a few ways developers can learn of a security problem:

¢ they notice it on a public forum (mailing list, web site, etc.)

¢ someone files a bug report

¢ someone informs them via private email
In the first two cases, the information is public and it is important to have a fix as soon as
possible. In the last case, however, it might not be public information. In that case there are a
few possible options for dealing with the problem:

¢ If the security exposure is minor, there is sometimes no need to keep the problem a secret
and a fix should be made and released.

¢ If the problem is severe, it is preferable to share the information with other vendors and
coordinate a release. The security team keeps contacts with the various organizations
and individuals and can take care of that.

In all cases if the person who reports the problem asks that it not be disclosed, such requests
should be honored, with the obvious exception of informing the security team in order that a
fix may be produced for a stable release of Debian. When sending confidential information to
the security team, be sure to mention this fact.

Chapter 5. Managing Packages 43

Please note that if secrecy is needed you may not upload a fix to unstable (or anywhere else,
such as a public CVS repository). It is not sufficient to obfuscate the details of the change, as
the code itself is public, and can (and will) be examined by the general public.

There are two reasons for releasing information even though secrecy is requested: the problem
has been known for a while, or the problem or exploit has become public.

Security Advisories

Security advisories are only issued for the current, released stable distribution, and not for test-
ing or unstable. When released, advisories are sent to the <debian-security-announce@
lists.debian.org> mailing list and posted on the security web page (http://www.
debian.org/security/). Security advisories are written and posted by the security team.
However they certainly do not mind if a maintainer can supply some of the information for
them, or write part of the text. Information that should be in an advisory includes:
¢ A description of the problem and its scope, including:
— The type of problem (privilege escalation, denial of service, etc.)
— What privileges may be gained, and by whom (if any)
- How it can be exploited
— Whether it is remotely or locally exploitable
- How the problem was fixed
This information allows users to assess the threat to their systems.
* Version numbers of affected packages
¢ Version numbers of fixed packages
¢ Information on where to obtain the updated packages (usually from the Debian security
archive)
* References to upstream advisories, CVE (http://cve.mitre.org) identifiers, and any
other information useful in cross-referencing the vulnerability

Preparing packages to address security issues

One way that you can assist the security team in their duties is to provide them with fixed
packages suitable for a security advisory for the stable Debian release.

When an update is made to the stable release, care must be taken to avoid changing system
behavior or introducing new bugs. In order to do this, make as few changes as possible to fix
the bug. Users and administrators rely on the exact behavior of a release once it is made, so
any change that is made might break someone’s system. This is especially true of libraries:
make sure you never change the API or ABI, no matter how small the change.

This means that moving to a new upstream version is not a good solution. Instead, the relevant
changes should be back-ported to the version present in the current stable Debian release.
Generally, upstream maintainers are willing to help if needed. If not, the Debian security team
may be able to help.

In some cases, it is not possible to back-port a security fix, for example when large amounts of
source code need to be modified or rewritten. If this happens, it may be necessary to move to a

http://www.debian.org/security/
http://www.debian.org/security/
http://cve.mitre.org

Chapter 5. Managing Packages 44

new upstream version. However, this is only done in extreme situations, and you must always
coordinate that with the security team beforehand.

Related to this is another important guideline: always test your changes. If you have an exploit
available, try it and see if it indeed succeeds on the unpatched package and fails on the fixed
package. Test other, normal actions as well, as sometimes a security fix can break seemingly
unrelated features in subtle ways.

Do NOT include any changes in your package which are not directly related to fixing the
vulnerability. These will only need to be reverted, and this wastes time. If there are other
bugs in your package that you would like to fix, make an upload to proposed-updates in the
usual way, after the security advisory is issued. The security update mechanism is not a means
for introducing changes to your package which would otherwise be rejected from the stable
release, so please do not attempt to do this.

Review and test your changes as much as possible. Check the differences from the pre-
vious version repeatedly (interdiff from the patchutils package and debdiff from
devscripts are useful tools for this, see ‘debdiff “ on page 99).

Be sure to verify the following items:

¢ Target the right distribution in your debian/changelog . For stable this is
stable-security and for testing this is testing-security , and for the previ-
ous stable release, this is oldstable-security . Do not target distribution-proposed-

updates or stable !
¢ The upload should have urgency=high.

* Make descriptive, meaningful changelog entries. Others will rely on them to determine
whether a particular bug was fixed. Always include an external reference, preferably a
CVE identifier, so that it can be cross-referenced. Include the same information in the
changelog for unstable, so that it is clear that the same bug was fixed, as this is very
helpful when verifying that the bug is fixed in the next stable release. If a CVE identifier
has not yet been assigned, the security team will request one so that it can be included in
the package and in the advisory.

¢ Make sure the version number is proper. It must be greater than the current package,
but less than package versions in later distributions. If in doubt, test it with dpkg
--compare-versions . Be careful not to re-use a version number that you have al-
ready used for a previous upload. For testing, there must be a higher version in unstable.
If there is none yet (for example, if testing and unstable have the same version) you must
upload a new version to unstable first.

* Do not make source-only uploads if your package has any binary-all packages (do not
use the -S option to dpkg-buildpackage). The buildd infrastructure will not build
those. This point applies to normal package uploads as well.

¢ Unless the upstream source has been uploaded to security.debian.org before (by a previ-
ous security update), build the upload with full upstream source (dpkg-buildpackage

Chapter 5. Managing Packages 45

-sa). If there has been a previous upload to security.debian.org with the same upstream
version, you may upload without upstream source (dpkg-buildpackage -sd)-

¢ Be sure to use the exact same *.orig.tar.gz as used in the normal archive, otherwise
it is not possible to move the security fix into the main archives later.

* Build the package on a clean system which only has packages installed from the distri-
bution you are building for. If you do not have such a system yourself, you can use a de-
bian.org machine (see ‘Debian machines” on page 13) or setup a chroot (see ‘pbuilder ’
on page 101 and ‘debootstrap ” on page 101).

Uploading the fixed package

Do NOT upload a package to the security upload queue (oldstable-security, stable-security,
etc.) without prior authorization from the security team. If the package does not exactly meet
the team’s requirements, it will cause many problems and delays in dealing with the unwanted
upload.

Do NOT upload your fix to proposed-updates without coordinating with the security team.
Packages from security.debian.org will be copied into the proposed-updates directory auto-
matically. If a package with the same or a higher version number is already installed into
the archive, the security update will be rejected by the archive system. That way, the stable
distribution will end up without a security update for this package instead.

Once you have created and tested the new package and it has been approved by the security
team, it needs to be uploaded so that it can be installed in the archives. For security uploads,
the place to upload to is ftp://security.debian.org/pub/SecurityUploadQueue/

Once an upload to the security queue has been accepted, the package will automatically be
rebuilt for all architectures and stored for verification by the security team.

Uploads which are waiting for acceptance or verification are only accessible by the security
team. This is necessary since there might be fixes for security problems that cannot be disclosed
yet.

If a member of the security team accepts a package, it will be installed on security.debian.org
as well as the proper distribution-proposed-updates on ftp-master or in the non-US archive.

5.9 Moving, removing, renaming, adopting, and orphaning pack-
ages

Some archive manipulation operations are not automated in the Debian upload process. These
procedures should be manually followed by maintainers. This chapter gives guidelines in
what to do in these cases.

Chapter 5. Managing Packages 46

5.9.1 Moving packages

Sometimes a package will change its section. For instance, a package from the ‘non-free’ section
might be GPL'd in a later version, in which case the package should be moved to ‘main” or
‘contrib”.!

If you need to change the section for one of your packages, change the package control informa-
tion to place the package in the desired section, and re-upload the package (see the Debian Pol-
icy Manual (http://www.debian.org/doc/debian-policy/) for details). If your new
section is valid, it will be moved automatically. If it does not, then contact the ftpmasters in
order to understand what happened.

If, on the other hand, you need to change the subsection of one of your packages (e.g., “devel”,
“admin”), the procedure is slightly different. Correct the subsection as found in the control
file of the package, and re-upload that. Also, you'll need to get the override file updated, as
described in ‘Specifying the package section, subsection and priority” on page 37.

5.9.2 Removing packages

If for some reason you want to completely remove a package (say, if it is an old compatibility
library which is no longer required), you need to file a bug against ftp.debian.org asking
that the package be removed. Make sure you indicate which distribution the package should be
removed from. Normally, you can only have packages removed from unstable and experimental.
Packages are not removed from testing directly. Rather, they will be removed automatically
after the package has been removed from unstable and no package in testing depends on it.

You also have to detail the reasons justifying that request. This is to avoid unwanted removals
and to keep a trace of why a package has been removed. For example, you can provide the
name of the package that supersedes the one to be removed.

Usually you only ask for the removal of a package maintained by yourself. If you want to
remove another package, you have to get the approval of its maintainer.

If in doubt concerning whether a package is disposable, email <debian-devel@lists.
debian.org> asking for opinions. Also of interest is the apt-cache program from the
apt package. When invoked as apt-cache showpkg package , the program will show
details for package, including reverse depends. Removal of orphaned packages is discussed on
<debian-ga@lists.debian.org>

Once the package has been removed, the package’s bugs should be handled. They should
either be reassigned to another package in the case where the actual code has evolved into
another package (e.g. libfool2 was removed because libfool3 supersedes it) or closed if
the software is simply no more part of Debian.

1See the Debian Policy Manual (http://www.debian.org/doc/debian-policy/) for guidelines on what
section a package belongs in.

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. Managing Packages 47

Removing packages from Incoming

In the past, it was possible to remove packages from incoming . However, with the introduc-
tion of the new incoming system, this is no longer possible. Instead, you have to upload a new
revision of your package with a higher version than the package you want to replace. Both
versions will be installed in the archive but only the higher version will actually be available
in unstable since the previous version will immediately be replaced by the higher. However,
if you do proper testing of your packages, the need to replace a package should not occur too
often anyway.

5.9.3 Replacing or renaming packages

When you make a mistake naming your package, you should follow a two-step process
to rename it. First, set your debian/control file to replace and conflict with the obso-
lete name of the package (see the Debian Policy Manual (http://www.debian.org/doc/
debian-policy/) for details). Once you’'ve uploaded the package and the package has
moved into the archive, file a bug against ftp.debian.org asking to remove the package
with the obsolete name. Do not forget to properly reassign the package’s bugs at the same
time.

At other times, you may make a mistake in constructing your package and wish to replace
it. The only way to do this is to increase the version number and upload a new version. The
old version will be expired in the usual manner. Note that this applies to each part of your
package, including the sources: if you wish to replace the upstream source tarball of your
package, you will need to upload it with a different version. An easy possibility is to replace
foo_1.00.orig.tar.gz with foo_1.00+0.orig.tar.gz . This restriction gives each file
on the ftp site a unique name, which helps to ensure consistency across the mirror network.

5.9.4 Orphaning a package

If you can no longer maintain a package, you need to inform the others about that, and see that
the package is marked as orphaned. You should set the package maintainer to Debian QA
Group <packages@qa.debian.org> and submit a bug report against the pseudo package
wnpp. The bug report should be titled O: package -- short description indicating
that the package is now orphaned. The severity of the bug should be set to normal; if the
package has a priority of standard or higher, it should be set to important. If you feel it’s
necessary, send a copy to <debian-devel@lists.debian.org> by putting the address in
the X-Debbugs-CC: header of the message (no, don’t use CC:, because that way the message’s
subject won’t indicate the bug number).

If you just intend to give the package away, but you can keep maintainership for the moment,
then you should instead submit a bug against wnpp and title it RFA: package -- short
description . RFAstands for Request For Adoption.

More information is on the WNPP web pages (http://www.debian.org/devel/wnpp/).

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/
http://www.debian.org/devel/wnpp/

Chapter 5. Managing Packages 48

5.9.5 Adopting a package

A list of packages in need of a new maintainer is available at in the Work-Needing and Prospec-
tive Packages list (WNPP) (http://www.debian.org/devel/wnpp/). If you wish to take
over maintenance of any of the packages listed in the WNPP, please take a look at the afore-
mentioned page for information and procedures.

It is not OK to simply take over a package that you feel is neglected — that would be package
hijacking. You can, of course, contact the current maintainer and ask them if you may take
over the package. If you have reason to believe a maintainer has gone AWOL (absent without
leave), see ‘Dealing with inactive and/or unreachable maintainers” on page 89.

Generally, you may not take over the package without the assent of the current maintainer.
Even if they ignore you, that is still not grounds to take over a package. Complaints about
maintainers should be brought up on the developers” mailing list. If the discussion doesn’t
end with a positive conclusion, and the issue is of a technical nature, consider bringing it to
the attention of the technical committee (see the technical committee web page (http://www.
debian.org/devel/tech-ctte) for more information).

If you take over an old package, you probably want to be listed as the package’s official main-
tainer in the bug system. This will happen automatically once you upload a new version with
an updated Maintainer: tield, although it can take a few hours after the upload is done.
If you do not expect to upload a new version for a while, you can use “The Package Tracking
System’ on page 25 to get the bug reports. However, make sure that the old maintainer has no
problem with the fact that they will continue to receive the bugs during that time.

5.10 Porting and being ported

Debian supports an ever-increasing number of architectures. Even if you are not a porter, and
you don’t use any architecture but one, it is part of your duty as a maintainer to be aware
of issues of portability. Therefore, even if you are not a porter, you should read most of this
chapter.

Porting is the act of building Debian packages for architectures that are different from the
original architecture of the package maintainer’s binary package. It is a unique and essential
activity. In fact, porters do most of the actual compiling of Debian packages. For instance, for
a single 1386 binary package, there must be a recompile for each architecture, which amounts
to 12 more builds.

5.10.1 Being kind to porters

Porters have a difficult and unique task, since they are required to deal with a large volume
of packages. Ideally, every source package should build right out of the box. Unfortunately,
this is often not the case. This section contains a checklist of “gotchas” often committed by
Debian maintainers — common problems which often stymie porters, and make their jobs
unnecessarily difficult.

http://www.debian.org/devel/wnpp/
http://www.debian.org/devel/tech-ctte
http://www.debian.org/devel/tech-ctte

Chapter 5. Managing Packages 49

The first and most important thing is to respond quickly to bug or issues raised by porters.
Please treat porters with courtesy, as if they were in fact co-maintainers of your package (which,
in a way, they are). Please be tolerant of succinct or even unclear bug reports; do your best to
hunt down whatever the problem is.

By far, most of the problems encountered by porters are caused by packaging bugs in the source
packages. Here is a checklist of things you should check or be aware of.

1

7

Make sure that your Build-Depends and Build-Depends-Indep settings in
debian/control are set properly. The best way to validate this is to use the
debootstrap package to create an unstable chroot environment (see ‘debootstrap ’
on page 101). Within that chrooted environment, install the build-essential
package and any package dependencies mentioned in Build-Depends and/or
Build-Depends-Indep . Finally, try building your package within that chrooted en-
vironment. These steps can be automated by the use of the pbuilder program which is
provided by the package of the same name (see ‘pbuilder ’ on page 101).

If you can’t set up a proper chroot, dpkg-depcheck may be of assistance (see
‘dpkg-depcheck ’on page 103).

See the Debian Policy Manual (http://www.debian.org/doc/debian-policy/)
for instructions on setting build dependencies.

Don’t set architecture to a value other than “all” or “any” unless you really mean it.
In too many cases, maintainers don’t follow the instructions in the Debian Policy Man-
ual (http://www.debian.org/doc/debian-policy/). Setting your architecture to
“i386” is usually incorrect.

Make sure your source package is correct. Do dpkg-source -x package .dsc to
make sure your source package unpacks properly. Then, in there, try building your pack-
age from scratch with dpkg-buildpackage

Make sure you don’t ship your source package with the debian/files or debian
/substvars files. They should be removed by the ‘clean’ target of debian/rules

Make sure you don’t rely on locally installed or hacked configurations or programs. For
instance, you should never be calling programs in /usr/local/bin or the like. Try not
to rely on programs being setup in a special way. Try building your package on another
machine, even if it’s the same architecture.

Don’t depend on the package you're building being installed already (a sub-case of the
above issue).

Don’t rely on the compiler being a certain version, if possible. If not, then make sure your
build dependencies reflect the restrictions, although you are probably asking for trouble,
since different architectures sometimes standardize on different compilers.

Make sure your debian/rules contains separate “binary-arch” and “binary-indep” tar-
gets, as the Debian Policy Manual requires. Make sure that both targets work indepen-
dently, that is, that you can call the target without having called the other before. To test
this, try to run dpkg-buildpackage -B

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 5. Managing Packages 50

5.10.2 Guidelines for porter uploads

If the package builds out of the box for the architecture to be ported to, you are in luck and
your job is easy. This section applies to that case; it describes how to build and upload your
binary package so that it is properly installed into the archive. If you do have to patch the
package in order to get it to compile for the other architecture, you are actually doing a source
NMU, so consult ‘How to do a NMU’ on page 53 instead.

For a porter upload, no changes are being made to the source. You do not need to touch any of
the files in the source package. This includes debian/changelog

The way to invoke dpkg-buildpackage is as dpkg-buildpackage -B
-mporter-email . Of course, set porter-email to your email address. This will do a
binary-only build of only the architecture-dependent portions of the package, using the
‘binary-arch’ target in debian/rules

If you are working on a Debian machine for your porting efforts and you need to sign your
upload locally for its acceptance in the archive, you can run debsign on your .changes file
to have it signed conveniently, or use the remote signing mode of dpkg-sig

Recompilation or binary-only NMU

Sometimes the initial porter upload is problematic because the environment in which the pack-
age was built was not good enough (outdated or obsolete library, bad compiler, ...). Then you
may just need to recompile it in an updated environment. However, you have to bump the
version number in this case, so that the old bad package can be replaced in the Debian archive
(katie refuses to install new packages if they don’t have a version number greater than the
currently available one).

You have to make sure that your binary-only NMU doesn’t render the package uninstallable.
This could happen when a source package generates arch-dependent and arch-independent
packages that depend on each other via $(Source-Version).

Despite the required modification of the changelog, these are called binary-only NMUs — there
is no need in this case to trigger all other architectures to consider themselves out of date or
requiring recompilation.

Such recompilations require special “magic” version numbering, so that the archive mainte-
nance tools recognize that, even though there is a new Debian version, there is no correspond-
ing source update. If you get this wrong, the archive maintainers will reject your upload (due
to lack of corresponding source code).

The “magic” for a recompilation-only NMU is triggered by using the third-level number on
the Debian part of the version. For instance, if the latest version you are recompiling against
was version “2.9-3”, your NMU should carry a version of “2.9-3.0.1”. If the latest version was
“3.4-2.1”, your NMU should have a version number of “3.4-2.1.1”.

Similar to initial porter uploads, the correct way of invoking dpkg-buildpackage is
dpkg-buildpackage -B to only build the architecture-dependent parts of the package.

Chapter 5. Managing Packages 51

When to do a source NMU if you are a porter

Porters doing a source NMU generally follow the guidelines found in ‘Non-Maintainer Up-
loads (NMUs)” on the next page, just like non-porters. However, it is expected that the wait
cycle for a porter’s source NMU is smaller than for a non-porter, since porters have to cope
with a large quantity of packages. Again, the situation varies depending on the distribution
they are uploading to. It also varies whether the architecture is a candidate for inclusion into
the next stable release; the release managers decide and announce which architectures are can-
didates.

If you are a porter doing an NMU for ‘unstable’, the above guidelines for porting should be
followed, with two variations. Firstly, the acceptable waiting period — the time between when
the bug is submitted to the BTS and when it is OK to do an NMU — is seven days for porters
working on the unstable distribution. This period can be shortened if the problem is critical
and imposes hardship on the porting effort, at the discretion of the porter group. (Remember,
none of this is Policy, just mutually agreed upon guidelines.) For uploads to stable or testing,
please coordinate with the appropriate release team first.

Secondly, porters doing source NMUs should make sure that the bug they submit to the BTS
should be of severity ‘serious’ or greater. This ensures that a single source package can be used
to compile every supported Debian architecture by release time. It is very important that we
have one version of the binary and source package for all architecture in order to comply with
many licenses.

Porters should try to avoid patches which simply kludge around bugs in the current version of
the compile environment, kernel, or libc. Sometimes such kludges can’t be helped. If you have
to kludge around compiler bugs and the like, make sure you #ifdef =~ your work properly;
also, document your kludge so that people know to remove it once the external problems have
been fixed.

Porters may also have an unofficial location where they can put the results of their work during
the waiting period. This helps others running the port have the benefit of the porter’s work,
even during the waiting period. Of course, such locations have no official blessing or status,
so buyer beware.

5.10.3 Porting infrastructure and automation

There is infrastructure and several tools to help automate the package porting. This section
contains a brief overview of this automation and porting to these tools; see the package docu-
mentation or references for full information.

Mailing lists and web pages

Web pages containing the status of each port can be found at http://www.debian.org/
ports/

http://www.debian.org/ports/
http://www.debian.org/ports/

Chapter 5. Managing Packages 52

Each port of Debian has a mailing list. The list of porting mailing lists can be found at http://
lists.debian.org/ports.html . These lists are used to coordinate porters, and to connect
the users of a given port with the porters.

Porter tools

Descriptions of several porting tools can be found in ‘Porting tools” on page 103.

buildd

The buildd system is used as a distributed, client-server build distribution system. It is usu-
ally used in conjunction with auto-builders, which are “slave” hosts which simply check out
and attempt to auto-build packages which need to be ported. There is also an email interface
to the system, which allows porters to “check out” a source package (usually one which cannot
yet be auto-built) and work on it.

buildd is not yet available as a package; however, most porting efforts are either using it
currently or planning to use it in the near future. The actual automated builder is packaged
as sbuild , see its description in ‘sbuild " on page 101. The complete buildd system also
collects a number of as yet unpackaged components which are currently very useful and in
use continually, such as andrea and wanna-build

Some of the data produced by buildd which is generally useful to porters is available on
the web at http://buildd.debian.org/ . This data includes nightly updated information
from andrea (source dependencies) and quinn-diff (packages needing recompilation).

We are quite proud of this system, since it has so many possible uses. Independent develop-
ment groups can use the system for different sub-flavors of Debian, which may or may not
really be of general interest (for instance, a flavor of Debian built with gcc bounds checking).
It will also enable Debian to recompile entire distributions quickly.

511 Non-Maintainer Uploads (NMUs)

Under certain circumstances it is necessary for someone other than the official package main-
tainer to make a release of a package. This is called a non-maintainer upload, or NMU.

This section handles only source NMUs, i.e. NMUs which upload a new version of the pack-
age. For binary-only NMUs by porters or QA members, please see ‘Recompilation or binary-
only NMU’ on page 50. If a buildd builds and uploads a package, that too is strictly speaking
a binary NMU. See ‘buildd ’ on the current page for some more information.

The main reason why NMUs are done is when a developer needs to fix another developer’s
packages in order to address serious problems or crippling bugs or when the package main-
tainer is unable to release a fix in a timely fashion.

http://lists.debian.org/ports.html
http://lists.debian.org/ports.html
http://buildd.debian.org/

Chapter 5. Managing Packages 53

First and foremost, it is critical that NMU patches to source should be as non-disruptive as
possible. Do not do housekeeping tasks, do not change the name of modules or files, do not
move directories; in general, do not fix things which are not broken. Keep the patch as small as
possible. If things bother you aesthetically, talk to the Debian maintainer, talk to the upstream
maintainer, or submit a bug. However, aesthetic changes must not be made in a non-maintainer
upload.

And please remember the Hippocratic Oath: “Above all, do no harm.” It is better if a package
has an grave bug open, than if a not working patch was applied, and the bug is only hidden
now but not resolved.

5.11.1 How to do a NMU

NMUs which fix important, serious or higher severity bugs are encouraged and accepted. You
should endeavor to reach the current maintainer of the package; they might be just about to
upload a fix for the problem, or have a better solution present.

NMUs should be made to assist a package’s maintainer in resolving bugs. Maintainers should
be thankful for that help, and NMUers should respect the decisions of maintainers, and try to
personally help the maintainer by their work.

A NMU should follow all conventions, written down in this section. For an upload to testing
or unstable, this order of steps is recommended:

Make sure that the package’s bugs that the NMU is meant to address are all filed in the
Debian Bug Tracking System (BTS). If they are not, submit them immediately.

* Wait a few days for the response from the maintainer. If you don’t get any response, you
may want to help them by sending the patch that fixes the bug. Don’t forget to tag the
bug with the “patch” keyword.

¢ Wait a few more days. If you still haven’t got an answer from the maintainer, send them
a mail announcing your intent to NMU the package. Prepare an NMU as described in
this section, and test it carefully on your machine (cf. “Testing the package’ on page 32).
Double check that your patch doesn’t have any unexpected side effects. Make sure your
patch is as small and as non-disruptive as it can be.

¢ Upload your package to incoming in DELAYED/7-day (cf. ‘Delayed uploads’ on
page 36), send the final patch to the maintainer via the BTS, and explain to them that
they have 7 days to react if they want to cancel the NMU.

¢ Follow what happens, you're responsible for any bug that you introduced with your
NMU. You should probably use ‘“The Package Tracking System” on page 25 (PTS) to stay
informed of the state of the package after your NMU.

At times, the release manager or an organized group of developers can announce a certain
period of time in which the NMU rules are relaxed. This usually involves shortening the period

Chapter 5. Managing Packages 54

during which one is to wait before uploading the fixes, and shortening the DELAYED period.
It is important to notice that even in these so-called “bug squashing party” times, the NMU’er
has to file bugs and contact the developer first, and act later. Please see ‘Bug squashing parties’
on page 88 for details.

For the testing distribution, the rules may be changed by the release managers. Please take
additional care, and acknowledge that the usual way for a package to enter testing is through
unstable.

For the stable distribution, please take extra care. Of course, the release managers may also
change the rules here. Please verify before upload that all your changes are OK for inclusion
into the next stable release by the release manager.

When a security bug is detected, the security team may do an NMU, using their own rules.
Please refer to ‘Handling security-related bugs” on page 42 for more information.

For the differences for Porters NMUSs, please see “‘When to do a source NMU if you are a porter’
on page 51.

Of course, it is always possible to agree on special rules with a maintainer (like the maintainer
asking “please upload this fix directly for me, and no diff required”).

5.11.2 NMU version numbering

Whenever you have made a change to a package, no matter how trivial, the version number
needs to change. This enables our packing system to function.

If you are doing a non-maintainer upload (NMU), you should add a new minor version num-
ber to the debian-revision part of the version number (the portion after the last hyphen). This
extra minor number will start at “1”. For example, consider the package ‘foo’, which is at
version 1.1-3. In the archive, the source package control file would be foo_1.1-3.dsc . The
upstream version is ‘1.1” and the Debian revision is ‘3". The next NMU would add a new minor
number ‘.1’ to the Debian revision; the new source control file would be foo_1.1-3.1.dsc

The Debian revision minor number is needed to avoid stealing one of the package maintainer’s
version numbers, which might disrupt their work. It also has the benefit of making it visually
clear that a package in the archive was not made by the official maintainer.

If there is no debian-revision component in the version number then one should be created,
starting at ‘0.1". If it is absolutely necessary for someone other than the usual maintainer to
make a release based on a new upstream version then the person making the release should
start with the debian-revision value ‘0.1’. The usual maintainer of a package should start their
debian-revision numbering at “1”.

If you upload a package to testing or stable, sometimes, you need to “fork” the version number
tree. For this, version numbers like 1.1-3sarge0.1 could be used.

Chapter 5. Managing Packages 55

5.11.3 Source NMUs must have a new changelog entry

A non-maintainer doing a source NMU must create a changelog entry, describing which bugs
are fixed by the NMU, and generally why the NMU was required and what it fixed. The
changelog entry will have the non-maintainer’s email address in the log entry and the NMU
version number in it.

By convention, source NMU changelog entries start with the line

* Non-maintainer upload

5.11.4 Source NMUs and the Bug Tracking System

Maintainers other than the official package maintainer should make as few changes to the
package as possible, and they should always send a patch as a unified context diff (diff -u)
detailing their changes to the Bug Tracking System.

What if you are simply recompiling the package? If you just need to recompile it for a single
architecture, then you may do a binary-only NMU as described in ‘Recompilation or binary-
only NMU’ on page 50 which doesn’t require any patch to be sent. If you want the package to
be recompiled for all architectures, then you do a source NMU as usual and you will have to
send a patch.

If the source NMU (non-maintainer upload) fixes some existing bugs, these bugs should be
tagged fixed in the Bug Tracking System rather than closed. By convention, only the official
package maintainer or the original bug submitter close bugs. Fortunately, Debian’s archive
system recognizes NMUs and thus marks the bugs fixed in the NMU appropriately if the per-
son doing the NMU has listed all bugs in the changelog with the Closes: bug# nnnnn syn-
tax (see "‘When bugs are closed by new uploads” on page 41 for more information describing
how to close bugs via the changelog). Tagging the bugs fixed ensures that everyone knows that
the bug was fixed in an NMU; however the bug is left open until the changes in the NMU are
incorporated officially into the package by the official package maintainer.

Also, after doing an NMU, you have to send that information to the existing bugs that are fixed
by your NMU, including the unified diff. Alternatively you can open a new bug and include
a patch showing all the changes you have made. The normal maintainer will either apply
the patch or employ an alternate method of fixing the problem. Sometimes bugs are fixed
independently upstream, which is another good reason to back out an NMU’s patch. If the
maintainer decides not to apply the NMU'’s patch but to release a new version, the maintainer
needs to ensure that the new upstream version really fixes each problem that was fixed in the
non-maintainer release.

In addition, the normal maintainer should always retain the entry in the changelog file docu-
menting the non-maintainer upload.

Chapter 5. Managing Packages 56

5.11.5 Building source NMUs

Source NMU packages are built normally. Pick a distribution using the same rules as found in
‘Picking a distribution” on page 34, follow the other prescriptions in “Uploading a package’ on
page 35.

Make sure you do not change the value of the maintainer in the debian/control file. Your
name as given in the NMU entry of the debian/changelog tile will be used for signing the
changes file.

5.11.6 Acknowledging an NMU

If one of your packages has been NMU’ed, you have to incorporate the changes in your copy of
the sources. This is easy, you just have to apply the patch that has been sent to you. Once this
is done, you have to close the bugs that have been tagged fixed by the NMU. The easiest way
is to use the -v option of dpkg-buildpackage , as this allows you to include just all changes
since your last maintainer upload. Alternatively, you can close them manually by sending the
required mails to the BTS or by adding the required closes: #nnnn in the changelog entry
of your next upload.

In any case, you should not be upset by the NMU. An NMU is not a personal attack against
the maintainer. It is a proof that someone cares enough about the package and that they were
willing to help you in your work, so you should be thankful. You may also want to ask them if
they would be interested in helping you on a more frequent basis as co-maintainer or backup
maintainer (see ‘Collaborative maintenance” on the facing page).

5.11.7 NMU vs QA uploads

Unless you know the maintainer is still active, it is wise to check the package to see if it has
been orphaned. The current list of orphaned packages which haven’t had their maintainer
set correctly is available at http:/qa.debian.org/orphaned.html . If you perform an
NMU on an improperly orphaned package, please set the maintainer to “Debian QA Group
<packages@qa.debian.org>". Also, the bugs are closed in that case, and not only marked fixed.

5.11.8 Who can do an NMU

Only official, registered Debian maintainers can do binary or source NMUs. An official main-
tainer is someone who has their key in the Debian key ring. Non-developers, however, are
encouraged to download the source package and start hacking on it to fix problems; however,
rather than doing an NMU, they should just submit worthwhile patches to the Bug Tracking
System. Maintainers almost always appreciate quality patches and bug reports.

http://qa.debian.org/orphaned.html

Chapter 5. Managing Packages 57

5.11.9 How dak detects NMUs

Whether an upload is treated as an NMU or as a maintainer upload by the archive scripts and
the bugtracking system (see ‘Source NMUs and the Bug Tracking System” on page 55) is not
decided by looking at the version number (see ‘'NMU version numbering’ on page 54). Instead,
an upload is handled as an NMU if the maintainer address in the .changes file is not binary
the same as the address in the Maintainer field, or any of the addresses the Uploaders
tield, of the dsc file, and also if the maintainer address is not special (i.e. it is not set to the QA
Group address).

5.11.10 Terminology

There are two new terms used throughout this section: “binary-only NMU” and “source
NMU". These terms are used with specific technical meaning throughout this document. Both
binary-only and source NMUs are similar, since they involve an upload of a package by a de-
veloper who is not the official maintainer of that package. That is why it’s a non-maintainer
upload.

A source NMU is an upload of a package by a developer who is not the official maintainer,
for the purposes of fixing a bug in the package. Source NMUs always involves changes to
the source (even if it is just a change to debian/changelog). This can be either a change to
the upstream source, or a change to the Debian bits of the source. Note, however, that source
NMUSs may also include architecture-dependent packages, as well as an updated Debian diff.

A binary-only NMU is a recompilation and upload of a binary package for a given architec-
ture. As such, it is usually part of a porting effort. A binary-only NMU is a non-maintainer
uploaded binary version of a package, with no source changes required. There are many cases
where porters must fix problems in the source in order to get them to compile for their target
architecture; that would be considered a source NMU rather than a binary-only NMU. As you
can see, we don’t distinguish in terminology between porter NMUs and non-porter NMUs.

Both classes of NMUs, source and binary-only, can be lumped by the term “NMU”. However,
this often leads to confusion, since most people think “source NMU” when they think “NMU".
So it’s best to be careful: always use “binary NMU” or “binNMU” for binary-only NMUs.

5.12 Collaborative maintenance

“Collaborative maintenance” is a term describing the sharing of Debian package maintenance
duties by several people. This collaboration is almost always a good idea, since it generally
results in higher quality and faster bug fix turnaround time. It is strongly recommended that
packages with a priority of Standard or which are part of the base set have co-maintainers.

Generally there is a primary maintainer and one or more co-maintainers. The primary main-
tainer is the person whose name is listed in the Maintainer field of the debian/control
file. Co-maintainers are all the other maintainers.

In its most basic form, the process of adding a new co-maintainer is quite easy:

Chapter 5. Managing Packages 58

¢ Setup the co-maintainer with access to the sources you build the package from. Generally
this implies you are using a network-capable version control system, such as CVSor
Subversion

¢ Add the co-maintainer’s correct maintainer name and address to the Uploaders field in
the global part of the debian/control file.

Uploaders: John Buzz <jbuzz@debian.org>, Adam Rex <arex@debian.org>

¢ Using the PTS (‘The Package Tracking System” on page 25), the co-maintainers should
subscribe themselves to the appropriate source package.

Collaborative maintenance can often be further eased with the use of tools on Alioth (see ‘De-
bian *Forge: Alioth” on page 29).

5.13 The testing distribution

5.13.1 Basics

Packages are usually installed into the ‘testing” distribution after they have undergone some
degree of testing in unstable.

They must be in sync on all architectures and mustn’t have dependencies that make them unin-
stallable; they also have to have generally no known release-critical bugs at the time they're
installed into testing. This way, ‘testing” should always be close to being a release candidate.
Please see below for details.

5.13.2 Updates from unstable

The scripts that update the testing distribution are run each day after the installation of the
updated packages; these scripts are called britney. They generate the Packages files for the
testing distribution, but they do so in an intelligent manner; they try to avoid any inconsistency
and to use only non-buggy packages.

The inclusion of a package from unstable is conditional on the following:

¢ The package must have been available in unstable for 2, 5 or 10 days, depending on the
urgency (high, medium or low). Please note that the urgency is sticky, meaning that
the highest urgency uploaded since the previous testing transition is taken into account.
Those delays may be doubled during a freeze, or testing transitions may be switched off
altogether;

¢ It must have fewer release-critical bugs than the version currently available in testing;

Chapter 5. Managing Packages 59

¢ It must be available on all architectures on which it has previously been built in unstable.
‘The madison utility” on page 24 may be of interest to check that information;

¢ It must not break any dependency of a package which is already available in testing;

¢ The packages on which it depends must either be available in testing or they must be ac-
cepted into testing at the same time (and they will if they fulfill all the necessary criteria);

To find out whether a package is progressing into testing or not, see the testing script output on
the web page of the testing distribution (http://www.debian.org/devel/testing), or
use the program grep-excuses which is in the devscripts ~ package. This utility can easily
be used in a crontab(5) to keep yourself informed of the progression of your packages into
testing.

The update_excuses file does not always give the precise reason why the package is refused;
you may have to find it on your own by looking for what would break with the inclusion of the
package. The testing web page (http://www.debian.org/devel/testing) gives some
more information about the usual problems which may be causing such troubles.

Sometimes, some packages never enter testing because the set of inter-relationship is too com-
plicated and cannot be sorted out by the scripts. See below for details.

Some further dependency analysis is shown on http://bjorn.haxx.se/debian/ — but
be warned, this page also shows build dependencies which are not considered by britney.

out-of-date

For the testing migration script, “outdated” means: There are different versions in unstable for
the release architectures (except for the architectures in fuckedarches; fuckedarches is a list of
architectures that don’t keep up (in update_out.py), but currently, it's empty). “outdated” has
nothing whatsoever to do with the architectures this package has in testing.

Consider this example:

foo | alpha | arm
[, Fommeem e
testing | 1 | -
unstable | 1 | 2

The package is out of date on alpha in unstable, and will not go to testing. And removing
foo from testing would not help at all, the package is still out of date on alpha, and will not
propagate to testing.

However, if ftp-master removes a package in unstable (here on arm):

foo | alpha | arm | hurd-i386
+ +o-mt
testing | 1 | 1 | -

unstable | 2 | - | 1

http://www.debian.org/devel/testing
http://www.debian.org/devel/testing
http://bjorn.haxx.se/debian/

Chapter 5. Managing Packages 60

In this case, the package is up to date on all release architectures in unstable (and the extra
hurd-i386 doesn’t matter, as it’s not a release architecture).

Sometimes, the question is raised if it is possible to allow packages in that are not yet built on
all architectures: No. Just plainly no. (Except if you maintain glibc or so.)

Removals from testing

Sometimes, a package is removed to allow another package in: This happens only to allow
another package to go in if it’s ready in every other sense. Suppose e.g. that a conflicts with the
new version of b; then 2 may be removed to allow b in.

Of course, there is another reason to remove a package from testing: It’s just too buggy (and
having a single RC-bug is enough to be in this state).

circular dependencies

A situation which is not handled very well by britney is if package a depends on the new
version of package b, and vice versa.

An example of this is:

| testing | unstable
-+ +

a | 1; depends: b=1 | 2; depends: b=2
b | 1; depends: a=1 | 2; depends: a=2

Neither package a nor package b is considered for update.

Currently, this requires some manual hinting from the release team. Please contact them by
sending mail to <debian-release@lists.debian.org> if this happens to one of your
packages.

influence of package in testing

Generally, there is nothing that the status of a package in testing means for transition of the
next version from unstable to testing, with two exceptions: If the RC-bugginess of the package
goes down, it may go in even if it is still RC-buggy. The second exception is if the version of the
package in testing is out of sync on the different arches: Then any arch might just upgrade to
the version of the source package; however, this can happen only if the package was previously
forced through, the arch is in fuckedarches, or there was no binary package of that arch present
in unstable at all during the testing migration.

In summary this means: The only influence that a package being in testing has on a new
version of the same package is that the new version might go in easier.

Chapter 5. Managing Packages 61

details

If you are interested in details, this is how britney works:

The packages are looked at to determine whether they are valid candidates. This gives the
“update excuses”. The most common reasons why a package is not considered are too young,
RC-bugginess, and out of date on some arches. For this part, the release managers have ham-
mers of any size to force britney to consider a package. (Also, the base freeze is coded in that
part of britney.) (There is a similar thing for binary-only updates, but this is not described here.
If you're interested in that, please peruse the code.)

Now, the more complex part happens: Britney tries to update testing with the valid candidates;
first, each package alone, and then larger and even larger sets of packages together. Each try
is accepted if unstable is not more uninstallable after the update than before. (Before and after
this part, some hints are processed; but as only release masters can hint, this is probably not so
important for you.)

If you want to see more details, you can look it up on
merkel:/org/ftp.debian.org/testing /update_out/ (or there in ~aba/testing/update_out
to see a setup with a smaller packages file). Via web, it’s at http:/ftp-master.debian.
org/testing/update_out_code/

The hints are available via http://ftp-master.debian.org/testing/hints/

5.13.3 Direct updates to testing

The testing distribution is fed with packages from unstable according to the rules explained
above. However, in some cases, it is necessary to upload packages built only for testing. For
that, you may want to upload to testing-proposed-updates.

Keep in mind that packages uploaded there are not automatically processed, they have to
go through the hands of the release manager. So you’d better have a good reason to upload
there. In order to know what a good reason is in the release managers’ eyes, you should read
the instructions that they regularly give on <debian-devel-announce@lists.debian.

org> .

You should not upload to testing-proposed-updates when you can update your packages through
unstable. If you can’t (for example because you have a newer development version in unstable),
you may use this facility, but it is recommended that you ask for authorization from the release
manager first. Even if a package is frozen, updates through unstable are possible, if the upload
via unstable does not pull in any new dependencies.

Version numbers are usually selected by adding the codename of the testing distribution and a
running number, like 1.2sargel for the first upload through testing-proposed-updates of pack-
age version 1.2.

Please make sure you didn’t miss any of these items in your upload:

* Make sure that your package really needs to go through testing-proposed-updates, and can’t
go through unstable;

http://ftp-master.debian.org/testing/update_out_code/
http://ftp-master.debian.org/testing/update_out_code/
http://ftp-master.debian.org/testing/hints/

Chapter 5. Managing Packages 62

¢ Make sure that you included only the minimal amount of changes;
* Make sure that you included an appropriate explanation in the changelog;

* Make sure that you've written testing or testing-proposed-updates into your target distribu-
tion;

* Make sure that you've built and tested your package in testing, not in unstable;

* Make sure that your version number is higher than the version in testing and testing-
proposed-updates, and lower than in unstable;

¢ After uploading and successful build on all platforms, contact the release team at
<debian-release@lists.debian.org> and ask them to approve your upload.

5.13.4 Frequently asked questions
What are release-critical bugs, and how do they get counted?

All bugs of some higher severities are by default considered release-critical; currently, these are
critical, grave, and serious bugs.

Such bugs are presumed to have an impact on the chances that the package will be released
with the stable release of Debian: in general, if a package has open release-critical bugs filed
on it, it won’t get into “testing”, and consequently won’t be released in “stable”.

The unstable bug count are all release-critical bugs without either any release-tag (such as
potato, woody) or with release-tag sid; also, only if they are neither fixed nor set to sarge-
ignore. The “testing” bug count for a package is considered to be roughly the bug count of
unstable count at the last point when the “testing” version equalled the “unstable” version.

This will change post-sarge, as soon as we have versions in the bug tracking system.

How could installing a package into “testing” possibly break other packages?

The structure of the distribution archives is such that they can only contain one version of a
package; a package is defined by its name. So when the source package acmefoo is installed
into “testing”, along with its binary packages acme-foo-bin, acme-bar-bin, libacme-fool and
libacme-foo-dev, the old version is removed.

However, the old version may have provided a binary package with an old soname of a library,
such as libacme-foo0. Removing the old acmefoo will remove libacme-foo0, which will break
any packages which depend on it.

Evidently, this mainly affects packages which provide changing sets of binary packages in
different versions (in turn, mainly libraries). However, it will also affect packages upon which
versioned dependencies have been declared of the ==, <=, or « varieties.

Chapter 5. Managing Packages 63

When the set of binary packages provided by a source package change in this way, all the
packages that depended on the old binaries will have to be updated to depend on the new bi-
naries instead. Because installing such a source package into “testing” breaks all the packages
that depended on it in “testing”, some care has to be taken now: all the depending packages
must be updated and ready to be installed themselves so that they won’t be broken, and, once
everything is ready, manual intervention by the release manager or an assistant is normally
required.

If you are having problems with complicated groups of packages like this, contact debian-devel
or debian-release for help.

Chapter 5. Managing Packages

64

65

Chapter 6

Best Packaging Practices

Debian’s quality is largely due to the Debian Policy (http://www.debian.org/doc/
debian-policy/), which defines explicit baseline requirements which all Debian packages
must fulfill. Yet there is also a shared history of experience which goes beyond the Debian
Policy, an accumulation of years of experience in packaging. Many very talented people have
created great tools, tools which help you, the Debian maintainer, create and maintain excellent
packages.

This chapter provides some best practices for Debian developers. All recommendations are
merely that, and are not requirements or policy. These are just some subjective hints, advice
and pointers collected from Debian developers. Feel free to pick and choose whatever works
best for you.

6.1 Best practices for debian/rules

The following recommendations apply to the debian/rules file. Since debian/rules con-
trols the build process and selects the files which go into the package (directly or indirectly),
it’s usually the file maintainers spend the most time on.

6.1.1 Helper scripts

The rationale for using helper scripts in debian/rules is that lets maintainers use and share
common logic among many packages. Take for instance the question of installing menu entries:
you need to put the file into /usr/lib/menu , and add commands to the maintainer scripts
to register and unregister the menu entries. Since this is a very common thing for packages
to do, why should each maintainer rewrite all this on their own, sometimes with bugs? Also,
supposing the menu directory changed, every package would have to be changed.

Helper scripts take care of these issues. Assuming you comply with the conventions expected
by the helper script, the helper takes care of all the details. Changes in policy can be made in

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 6. Best Packaging Practices 66

the helper script; then packages just need to be rebuilt with the new version of the helper and
no other changes.

‘Overview of Debian Maintainer Tools” on page 97 contains a couple of different helpers. The
most common and best (in our opinion) helper system is debhelper . Previous helper sys-
tems, such as debmake, were “monolithic”: you couldn’t pick and choose which part of the
helper you found useful, but had to use the helper to do everything. debhelper , however, is
a number of separate little dh_* programs. For instance, dh_installman installs and com-
presses man pages, dh_installmenu installs menu files, and so on. Thus, it offers enough
flexibility to be able to use the little helper scripts, where useful, in conjunction with hand-
crafted commands in debian/rules

You can get started with debhelper by reading debhelper(l) , and looking at the exam-
ples that come with the package. dh_make, from the dh-make package (see ‘dh-make " on
page 100), can be used to convert a “vanilla” source package to a debhelper ized package.
This shortcut, though, should not convince you that you do not need to bother understanding
the individual dh_* helpers. If you are going to use a helper, you do need to take the time to
learn to use that helper, to learn its expectations and behavior.

Some people feel that vanilla debian/rules files are better, since you don’t have to learn the
intricacies of any helper system. This decision is completely up to you. Use what works for
you. Many examples of vanilla debian/rules files are available at http://arch.debian.
org/arch/private/srivasta/

6.1.2 Separating your patches into multiple files

Big, complex packages may have many bugs that you need to deal with. If you correct a
number of bugs directly in the source, and you're not careful, it can get hard to differentiate
the various patches that you applied. It can get quite messy when you have to update the
package to a new upstream version which integrates some of the fixes (but not all). You can’t
take the total set of diffs (e.g., from .diff.gz) and work out which patch sets to back out as a
unit as bugs are fixed upstream.

Unfortunately, the packaging system as such currently doesn’t provide for separating the
patches into several files. Nevertheless, there are ways to separate patches: the patch files
are shipped within the Debian patch file (.diff.gz), usually within the debian/ directory.
The only difference is that they aren’t applied immediately by dpkg-source, but by the build
rule of debian/rules . Conversely, they are reverted in the clean rule.

dbs is one of the more popular approaches to this. It does all of the above, and provides a
facility for creating new and updating old patches. See the package dbs for more information
and hello-dbs for an example.

dpatch also provides these facilities, but it’s intented to be even easier to use. See the package
dpatch for documentation and examples (in /usr/share/doc/dpatch).

http://arch.debian.org/arch/private/srivasta/
http://arch.debian.org/arch/private/srivasta/

Chapter 6. Best Packaging Practices 67

6.1.3 Multiple binary packages

A single source package will often build several binary packages, either to provide several
flavors of the same software (e.g., the vim source package) or to make several small packages
instead of a big one (e.g., if the user can install only the subset needed, and thus save some
disk space).

The second case can be easily managed in debian/rules . You just need to move the appro-
priate files from the build directory into the package’s temporary trees. You can do this using
install or dh_install from debhelper . Be sure to check the different permutations of the
various packages, ensuring that you have the inter-package dependencies set right in debian
[control

The first case is a bit more difficult since it involves multiple recompiles of the same software
but with different configuration options. The vim source package is an example of how to
manage this using an hand-crafted debian/rules file.

6.2 Best practices for debian/control

The following practices are relevant to the debian/control file. They supplement the Policy
on package descriptions (http://www.debian.org/doc/debian-policy/ch-binary.
html#s-descriptions).

The description of the package, as defined by the corresponding field in the control file, con-
tains both the package synopsis and the long description for the package. ‘General guidelines
for package descriptions’ on this page describes common guidelines for both parts of the pack-
age description. Following that, “The package synopsis, or short description” on the next page
provides guidelines specific to the synopsis, and ‘The long description” on page 69 contains
guidelines specific to the description.

6.2.1 General guidelines for package descriptions

The package description should be written for the average likely user, the average person who
will use and benefit from the package. For instance, development packages are for developers,
and can be technical in their language. More general-purpose applications, such as editors,
should be written for a less technical user.

Our review of package descriptions lead us to conclude that most package descriptions are
technical, that is, are not written to make sense for non-technical users. Unless your package
really is only for technical users, this is a problem.

How do you write for non-technical users? Avoid jargon. Avoid referring to other applications
or frameworks that the user might not be familiar with — “GNOME” or “KDE” is fine, since
users are probably familiar with these terms, but “GTK+" is probably not. Try not to assume
any knowledge at all. If you must use technical terms, introduce them.

http://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions
http://www.debian.org/doc/debian-policy/ch-binary.html#s-descriptions

Chapter 6. Best Packaging Practices 68

Be objective. Package descriptions are not the place for advocating your package, no matter
how much you love it. Remember that the reader may not care about the same things you care
about.

References to the names of any other software packages, protocol names, standards, or specifi-
cations should use their canonical forms, if one exists. For example, use “X Window System”,
“X11”7, or “X”; not “X Windows”, “X-Windows”, or “X Window”. Use “GTK+"”, not “GTK” or
“gtk”. Use “GNOME”, not “Gnome”. Use “PostScript”, not “Postscript” or “postscript”.

If you are having problems writing your description, you may wish to send it along to
<debian-110n-english@lists.debian.org> and request feedback.

6.2.2 The package synopsis, or short description

The synopsis line (the short description) should be concise. It must not repeat the package’s
name (this is policy).

It’s a good idea to think of the synopsis as an appositive clause, not a full sentence. An apposi-
tive clause is defined in WordNet as a grammatical relation between a word and a noun phrase
that follows, e.g., “Rudolph the red-nosed reindeer”. The appositive clause here is “red-nosed
reindeer”. Since the synopsis is a clause, rather than a full sentence, we recommend that it
neither start with a capital nor end with a full stop (period). It should also not begin with an

“_rm

article, either definite (“the”) or indefinite (“a” or “an”).

It might help to imagine that the synopsis is combined with the package name in the following
way:

package-name is a synopsis

Alternatively, it might make sense to think of it as

package-name is synopsis

or, if the package name itself is a plural (such as “developers-tools”)

package-name are Synopsis

This way of forming a sentence from the package name and synopsis should be considered as
a heuristic and not a strict rule. There are some cases where it doesn’t make sense to try to
form a sentence.

Chapter 6. Best Packaging Practices 69

6.2.3 The long description

The long description is the primary information available to the user about a package before
they install it. It should provide all the information needed to let the user decide whether to
install the package. Assume that the user has already read the package synopsis.

The long description should consist of full and complete sentences.

The first paragraph of the long description should answer the following questions: what does
the package do? what task does it help the user accomplish? It is important to describe this in
a non-technical way, unless of course the audience for the package is necessarily technical.

The following paragraphs should answer the following questions: Why do I as a user need
this package? What other features does the package have? What outstanding features and
deficiencies are there compared to other packages (e.g., “if you need X, use Y instead”)? Is this
package related to other packages in some way that is not handled by the package manager
(e.g., “this is the client for the foo server”)?

Be careful to avoid spelling and grammar mistakes. Ensure that you spell-check it. ispell
has a special -g option for debian/control files:

ispell -d american -g debian/control
Users usually expect these questions to be answered in the package description:
* What does the package do? If it is an add-on to another package, then the short descrip-

tion of the package we are an add-on to should be put in here.

¢ Why should I want this package? This is related to the above, but not the same (this is a
mail user agent; this is cool, fast, interfaces with PGP and LDAP and IMAP, has features
X,Y, and Z).

e If this package should not be installed directly, but is pulled in by another package, this
should be mentioned.

¢ If the package is experimental, or there are other reasons it should not be used, if there
are other packages that should be used instead, it should be here as well.

¢ How is this package different from the competition? Is it a better implementation? more
features? different features? Why should I choose this package.

6.2.4 Upstream home page

We recommend that you add the URL for the package’s home page to the package description
in debian/control . This information should be added at the end of description, using the
following format:

Chapter 6. Best Packaging Practices 70

Homepage: http://some-project.some-place.org/

Note the spaces prepending the line, which serves to break the lines correctly. To see
an example of how this displays, see http://packages.debian.org/unstable/text/
docbook-dsssl.html

If there is no home page for the software, this should naturally be left out.

Note that we expect this field will eventually be replaced by a proper debian/control field
understood by dpkg and packages.debian.org . If you don’t want to bother migrating the
home page from the description to this field, you should probably wait until that is available.

6.3 Best practices for debian/changelog

The following practices supplement the Policy on changelog files (http://www.debian.
org/doc/debian-policy/ch-docs.html#s-changelogs).

6.3.1 Writing useful changelog entries

The changelog entry for a package revision documents changes in that revision, and only them.
Concentrate on describing significant and user-visible changes that were made since the last
version.

Focus on what was changed — who, how and when are usually less important. Having said
that, remember to politely attribute people who have provided notable help in making the
package (e.g., those who have sent in patches).

There’s no need to elaborate the trivial and obvious changes. You can also aggregate several
changes in one entry. On the other hand, don’t be overly terse if you have undertaken a major
change. Be especially clear if there are changes that affect the behaviour of the program. For
further explanations, use the README.Debian file.

Use common English so that the majority of readers can comprehend it. Avoid abbreviations,
“tech-speak” and jargon when explaining changes that close bugs, especially for bugs filed by
users that did not strike you as particularly technically savvy. Be polite, don’t swear.

It is sometimes desirable to prefix changelog entries with the names of the files that were
changed. However, there’s no need to explicitly list each and every last one of the changed
files, especially if the change was small or repetitive. You may use wildcards.

When referring to bugs, don’t assume anything. Say what the problem was, how it was fixed,
and append the “closes: #nnnnn” string. See ‘When bugs are closed by new uploads’ on
page 41 for more information.

http://packages.debian.org/unstable/text/docbook-dsssl.html
http://packages.debian.org/unstable/text/docbook-dsssl.html
http://www.debian.org/doc/debian-policy/ch-docs.html#s-changelogs
http://www.debian.org/doc/debian-policy/ch-docs.html#s-changelogs

Chapter 6. Best Packaging Practices 71

6.3.2 Common misconceptions about changelog entries

The changelog entries should not document generic packaging issues (“Hey, if you're looking
for foo.conf, it’s in /etc/blah/.”), since administrators and users are supposed to be at least
remotely acquainted with how such things are generally arranged on Debian systems. Do,
however, mention if you change the location of a configuration file.

The only bugs closed with a changelog entry should be those that are actually fixed in the same
package revision. Closing unrelated bugs in the changelog is bad practice. See “‘When bugs are
closed by new uploads’ on page 41.

The changelog entries should not be used for random discussion with bug reporters (“I don’t
see segfaults when starting foo with option bar; send in more info”), general statements on
life, the universe and everything (“sorry this upload took me so long, but I caught the flu”),
or pleas for help (“the bug list on this package is huge, please lend me a hand”). Such things
usually won’t be noticed by their target audience, but may annoy people who wish to read
information about actual changes in the package. See ‘Responding to bugs” on page 39 for
more information on how to use the bug tracking system.

It is an old tradition to acknowledge bugs fixed in non-maintainer uploads in the first
changelog entry of the proper maintainer upload, for instance, in a changelog entry like this:

* Maintainer upload, closes: #42345, #44484, #42444.

This will close the NMU bugs tagged “fixed” when the package makes it into the archive. The
bug for the fact that an NMU was done can be closed the same way. Of course, it’s also perfectly
acceptable to close NMU-fixed bugs by other means; see ‘Responding to bugs” on page 39.

6.3.3 Common errors in changelog entries

The following examples demonstrate some common errors or example of bad style in
changelog entries.

* Fixed all outstanding bugs.

This doesn’t tell readers anything too useful, obviously.
* Applied patch from Jane Random.

What was the patch about?
* Late night install target overhaul.

Overhaul which accomplished what? Is the mention of late night supposed to remind us that
we shouldn’t trust that code?

Chapter 6. Best Packaging Practices 72

* Fix vsync FU w/ ancient CRTSs.

Too many acronyms, and it’s not overly clear what the, uh, fsckup (oops, a curse word!) was
actually about, or how it was fixed.

* This is not a bug, closes: #nnnnnn.

First of all, there’s absolutely no need to upload the package to convey this information; in-
stead, use the bug tracking system. Secondly, there’s no explanation as to why the report is not
a bug.

* Has been fixed for ages, but | forgot to close; closes: #54321.

If for some reason you didn’t mention the bug number in a previous changelog entry, there’s
no problem, just close the bug normally in the BTS. There’s no need to touch the changelog
tile, presuming the description of the fix is already in (this applies to the fixes by the upstream
authors/maintainers as well, you don’t have to track bugs that they fixed ages ago in your
changelog).

* Closes: #12345, #12346, #15432

Where’s the description? If you can’t think of a descriptive message, start by inserting the title
of each different bug.

6.3.4 Supplementing changelogs with NEWS.Debian files

Important news about changes in a package can also be put in NEWS.Debian files. The news
will be displayed by tools like apt-listchanges, before all the rest of the changelogs. This
is the preferred means to let the user know about significant changes in a package. It is
better than using debconf notes since it is less annoying and the user can go back and re-
fer to the NEWS.Debian file after the install. And it’s better than listing major changes in
README .Debian, since the user can easily miss such notes.

The file format is the same as a debian changelog file, but leave off the asterisks and describe
each news item with a full paragraph when necessary rather than the more concise summaries
that would go in a changelog. It’s a good idea to run your file through dpkg-parsechangelog
to check its formatting as it will not be automatically checked during build as the changelog is.
Here is an example of a real NEWS.Debian file:

cron (3.0pl1-74) unstable; urgency=low

The checksecurity script is no longer included with the cron package:
it now has its own package, "checksecurity". If you liked the

Chapter 6. Best Packaging Practices 73

functionality provided with that script, please install the new
package.

-- Steve Greenland <stevegr@debian.org> Sat, 6 Sep 2003 17:15:03 -0500

The NEWS.Debian file is installed as /usr/share/doc/<package>/NEWS.Debian.gz. It is
compressed, and always has that name even in Debian native packages. If you use debhelper,
dh_installchangelogs will install debian/NEWS files for you.

Unlike changelog files, you need not update NEWS.Debian files with every release. Only up-
date them if you have something particularly newsworthy that user should know about. If
you have no news at all, there’s no need to ship a NEWS.Debian file in your package. No news
is good news!

6.4 Best practices for maintainer scripts

Maintainer scripts include the files debian/postinst , debian/preinst , debian/prerm
and debian/postrm . These scripts take care of any package installation or deinstalla-
tion setup which isn’t handled merely by the creation or removal of files and directories.
The following instructions supplement the Debian Policy (http://www.debian.org/doc/
debian-policy/).

Maintainer scripts must be idempotent. That means that you need to make sure nothing bad
will happen if the script is called twice where it would usually be called once.

Standard input and output may be redirected (e.g. into pipes) for logging purposes, so don’t
rely on them being a tty.

All prompting or interactive configuration should be kept to a minimum. When it is necessary,
you should use the debconf package for the interface. Remember that prompting in any case
can only be in the configure stage of the postinst script.

Keep the maintainer scripts as simple as possible. We suggest you use pure POSIX shell scripts.
Remember, if you do need any bash features, the maintainer script must have a bash shebang
line. POSIX shell or Bash are preferred to Perl, since they enable debhelper to easily add bits
to the scripts.

If you change your maintainer scripts, be sure to test package removal, double installation, and
purging. Be sure that a purged package is completely gone, that is, it must remove any files
created, directly or indirectly, in any maintainer script.

If you need to check for the existence of a command, you should use something like
if [-x /usr/sbin/install-docs]; then ...

If you don’t wish to hard-code the path of a command in your maintainer script, the following
POSIX-compliant shell function may help:

http://www.debian.org/doc/debian-policy/
http://www.debian.org/doc/debian-policy/

Chapter 6. Best Packaging Practices 74

pathfind() {
OLDIFS="$IFS"
IFS=:
for p in $PATH; do
if [-x "$p/$*"]; then

IFS="$OLDIFS"
return 0
fi
done
IFS="$OLDIFS"
return 1

}

You can use this function to search $PATHfor a command name, passed as an argument. It
returns true (zero) if the command was found, and false if not. This is really the most portable
way, since command -v, type , and which are not POSIX.

While which is an acceptable alternative, since it is from the required debianutils package,
it’s not on the root partition. That is, it’s in /usr/bin rather than /bin , so one can’t use it
in scripts which are run before the /usr partition is mounted. Most scripts won’t have this
problem, though.

6.5 Configuration management with debconf

Debconf is a configuration management system which can be used by all the various packag-
ing scripts (postinst mainly) to request feedback from the user concerning how to configure
the package. Direct user interactions must now be avoided in favor of debconf interaction.
This will enable non-interactive installations in the future.

Debconf is a great tool but it is often poorly used. Many common mistakes are listed in the
debconf-devel(7) man page. It is something that you must read if you decide to use deb-
conf. Also, we document some best practices here.

These guidelines include some writing style and typography recommendations, general con-
siderations about debconf usage as well as more specific recommendations for some parts of
the distribution (for instance, the installation system).

6.5.1 Do not abuse debconf

Since debconf appeared in Debian, it has been widely abused and several criticisms received
by the Debian distribution come from debconf abuse with the need of answering a wide bunch
of questions before getting any little thing installed.

Keep usage notes to what they belong: the NEWS.Debian, or README.Debian file. Only use
notes for important notes which may directly affect the package usability. Remember that notes
will always block the install until confirmed or bother the user by email.

Chapter 6. Best Packaging Practices 75

Carefully choose the questions priorities in maintainer scripts. See debconf-devel(7) for
details about priorities. Most questions should use medium and low priorities.

6.5.2 General recommendations for authors and translators
Write correct English

Most Debian package maintainers are not native English speakers. So, writing properly
phrased templates may not be easy for them.

Please use (and abuse) debian-110n-english@lists.debian.org mailing list. Have your templates
proofread.

Badly written templates give a poor image of your package, of your work. .. or even of Debian
itself.

Avoid technical jargon as much as possible. If some terms sound common to you, they may
be impossible to understand for others. If you cannot avoid them, try to explain them (use the
extended description). When doing so, try to balance between verbosity and simplicity.

Be kind to translators

Debconf templates may be translated. Debconf, along with its sister package po-debconf offers
a simple framework for getting templates translated by translation teams or even individuals.

Please use gettext-based templates. Install po-debconf on your development system and read
its documentation (“man po-debconf” is a good start).

Avoid changing templates too often. Changing templates text induces more work to translators
which will get their translation “fuzzied”. If you plan changes to your original templates,
please contact translators. Most active translators are very reactive and getting their work
included along with your modified templates will save you additional uploads. If you use
gettext-based templates, the translator’s name and e-mail addresses are mentioned in the po
tiles headers.

If in doubt, you may also contact the translation team for a given language (debian-110n-
xxxxx@lists.debian.org), or the debian-i18n@lists.debian.org mailing list.

Do not make assumptions about interfaces

Templates text should not make reference to widgets belonging to some debconf interfaces.
Sentences like “If you answer Yes...” have no meaning for users of graphical interfaces which
use checkboxes for boolean questions.

More generally speaking, try to avoid referring to user actions. Just give facts.

Chapter 6. Best Packaging Practices 76

Do not use first person
You should avoid the use of first person (“I will do this...” or “We recommend...”). The
computer is not a person and the Debconf templates do not speak for the Debian developers.

You should use neutral construction and often the passive form. Those of you who already
wrote scientific publications, just write your templates like you would write a scientific paper.

Be gender neutral

The world is made of men and women. Please use gender-neutral constructions in your writ-
ing. This is not Political Correctness, this is showing respect to all humanity.

6.5.3 Templates fields definition

This part gives some information which is mostly taken from the debconf-devel(7) manual
page.

Type

string: Results in a free-form input field that the user can type any string into.

password: Prompts the user for a password. Use this with caution; be aware that the pass-
word the user enters will be written to debconf’s database. You should probably clean that
value out of the database as soon as is possible.

boolean: A true/false choice. Remember: true/false, NOT YES/NO...

select: A choice between one of a number of values. The choices must be specified in a field
named 'Choices’. Separate the possible values with commas and spaces, like this: Choices: yes,
no, maybe

multiselect: Like the select data type, except the user can choose any number of items from
the choices list (or chose none of them).

note: Rather than being a question per se, this datatype indicates a note that can be displayed
to the user. It should be used only for important notes that the user really should see, since
debconf will go to great pains to make sure the user sees it; halting the install for them to press
a key, and even mailing the note to them in some cases.

text: This type is now considered obsolete: don’t use it.

Chapter 6. Best Packaging Practices 77

error: THIS TEMPLATE TYPE IS NOT HANDLED BY DEBCONF YET.
It has been added to cdebconf, the C version of debconf, first used in the Debian Installer.
Please do not use it unless debconf supports it.

This type is designed to handle error message. It is mostly similar to the “note” type. Frontends
may present it differently (for instance, the dialog frontend of cdebconf draws a red screen
instead of the usual blue one).

Description: short and extended description

Templates descriptions have two parts: short and extended. The short description is in the
“Description:” line of the template.

The short description should be kept short (50 characters or so) so that it may be accomodated
by most debconf interfaces. Keeping it short also helps translators, as usually translations tend
to end up being longer than the original.

The short description should be able to stand on its own. Some interfaces do not show the long
description by default, or only if the user explicitely asks for it or even do not show it at all.
Avoid things like “What do you want to do?”

The short description does not necessarily have to be a full sentence. This is part of the “keep
it short and efficient” recommendation.

The extended description should not repeat the short description word for word. If you can’t
think up a long description, then first, think some more. Post to debian-devel. Ask for help.
Take a writing class! That extended description is important. If after all that you still can’t
come up with anything, leave it blank.

The extended description should use complete sentences. Paragraphs should be kept short
for improved readability. Do not mix two ideas in the same paragraph but rather use another
paragraph.

Don’t be too verbose. Some debconf interfaces cannot deal very well with descriptions of more
than about 20 lines, so try to keep it below this limit.

For specific rules depending on templates type (string, boolean, etc.), please read below.
Choices

This field should be used for Select and Multiselect types. It contains the possible choices
which will be presented to users. These choices should be separated by commas.

Default

This field is optional. It contains the default answer for string, select and multiselect templates.
For multiselect templates, it may contain a comma-separated list of choices.

Chapter 6. Best Packaging Practices 78

6.5.4 Templates fields specific style guide
Type field

No specific indication except: use the appropriate type by referring to the previous section.

Description field

Below are specific instructions for properly writing the Description (short and extended) de-
pending on the template type.

String/password templates

¢ The short description is a prompt and NOT a title. Avoid question style prompts (“IP
Address?”) in favour of “opened” prompts (“IP address:”). The use of colons is recom-
mended.

¢ The extended description is a complement to the short description. In the extended part,
explain what is being asked, rather than ask the same question again using longer words.
Use complete sentences. Terse writing style is strongly discouraged.

Boolean templates

¢ The short description should be phrased in the form of a question which should be kept
short and should generally end with a question mark. Terse writing style is permitted
and even encouraged if the question is rather long (remember that translations are often
longer than original versions)

¢ The extended description should NOT include a question.

¢ Again, please avoid referring to specific interface widgets. A common mistake for such
templates is “if you answer Yes”-type constructions.

Select/Multiselect

* The short description is a prompt and NOT a title. Do NOT use useless “Please
choose...” constructions. Users are clever enough to figure out they have to choose
something. . .:)

¢ The extended description will complete the short description. It may refer to the available
choices. It may also mention that the user may choose more than one of the available
choices, if the template is a multiselect one (although the interface often makes this clear).

Chapter 6. Best Packaging Practices 79

Notes

¢ The short description should be considered to be a *title*.

¢ The extended description is what will be displayed as a more detailed explanation of the
note. Phrases, no terse writing style.

e DO NOT ABUSE DEBCONE. Notes are the most common way to abuse debconf. As
written in debconf-devel manual page: it’s best to use them only for warning about very
serious problems. The NEWS.Debian or README.Debian files are the appropriate loca-
tion for a lot of notes. If, by reading this, you consider converting your Note type tem-
plates to entries in NEWS/Debian or README.Debian, plus consider keeping existing
translations for the future.

Choices field

If the Choices are likely to change often, please consider using the “__Choices” trick. This will
split each individual choice into a single string, which will considerably help translators for
doing their work.

Default field

If the default value, for a “select” template, is likely to vary depending on the user language
(for instance, if the choice is a language choice), please use the “_DefaultChoice” trick.

This special field allow translators to put the most appropriate choice according to their own
language. It will become the default choice when their language is used while your own men-
tioned Default Choice will be used chan using English.

Example, taken from the geneweb package templates:

Template: geneweb/lang

Type: select

__Choices: Afrikaans (af), Bulgarian (bg), Catalan (ca), Chinese (zh), Czech (cs), Danish (da), |
This is the default choice. Translators may put their own language here

instead of the default.

WARNING : you MUST use the ENGLISH FORM of your language

For instance, the french translator will need to put "French (fr)" here.

_DefaultChoice: English (en)[translators, please see comment in PO files]

_Description: Geneweb default language:

Note the use of brackets which allow internal comments in debconf fields. Also note the use of
comments which will show up in files the translators will work with.

The comments are needed as the DefaultChoice trick is a bit confusing: the translators may put
their own choice

Chapter 6. Best Packaging Practices 80

Default field

Do NOT use empty default field. If you don’t want to use default values, do not use Default at
all.

If you use po-debconf (and you SHOULD, see 2.2), consider making this field translatable, if
you think it may be translated.

If the default value may vary depending on language/country (for instance the default value
for a language choice), consider using the special “_DefaultChoice” type documented in
po-debconf(7)).

6.6 Internationalization

6.6.1 Handling debconf translations

Like porters, translators have a difficult task. They work on many packages and must collabo-
rate with many different maintainers. Moreover, most of the time, they are not native English
speakers, so you may need to be particularly patient with them.

The goal of debconf was to make packages configuration easier for maintainers and for users.
Originally, translation of debconf templates was handled with debconf-mergetemplate
However, that technique is now deprecated; the best way to accomplish debconf internation-
alization is by using the po-debconf package. This method is easier both for maintainer and
translators; transition scripts are provided.

Using po-debconf , the translation is stored in po files (drawing from gettext trans-
lation techniques). Special template files contain the original messages and mark which
fields are translatable. When you change the value of a translatable field, by calling
debconf-updatepo , the translation is marked as needing attention from the translators.
Then, at build time, the dh_installdebconf program takes care of all the needed magic
to add the template along with the up-to-date translations into the binary packages. Refer to
the po-debconf(7) manual page for details.

6.6.2 Internationalized documentation

Internationalizing documentation is crucial for users, but a lot of labor. There’s no way to
eliminate all that work, but you can make things easier for translators.

If you maintain documentation of any size, its easier for translators if they have ac-
cess to a source control system. That lets translators see the differences between two
versions of the documentation, so, for instance, they can see what needs to be retrans-
lated. It is recommended that the translated documentation maintain a note about what
source control revision the translation is based on. An interesting system is provided by
doc-check (http://cvs.debian.org/boot-floppies/documentation/doc-check?

http://cvs.debian.org/boot-floppies/documentation/doc-check?rev=HEADcontent-type=text/vnd.viewcvs-markup
http://cvs.debian.org/boot-floppies/documentation/doc-check?rev=HEADcontent-type=text/vnd.viewcvs-markup

Chapter 6. Best Packaging Practices 81

rev=HEADcontent-type=text/vnd.viewcvs-markup) in the boot-floppies pack-
age, which shows an overview of the translation status for any given language, using struc-
tured comments for the current revision of the file to be translated and, for a translated file, the
revision of the original file the translation is based on. You might wish to adapt and provide
that in your CVS area.

If you maintain XML or SGML documentation, we suggest that you isolate any language-
independent information and define those as entities in a separate file which is included by
all the different translations. This makes it much easier, for instance, to keep URLs up to date
across multiple files.

6.7 Common packaging situations

6.7.1 Packages using autoconf /automake

Keeping autoconf ’s config.sub and config.guess files up to date is critical for
porters, especially on more volatile architectures. Some very good packaging practices for
any package using autoconf and/or automake have been synthesized in /usr/share
/doc/autotools-dev/README.Debian.gz from the autotools-dev package. You're
strongly encouraged to read this file and to follow the given recommendations.

6.7.2 Libraries

Libraries are always difficult to package for various reasons. The policy imposes many con-
straints to ease their maintenance and to make sure upgrades are as simple as possible when
a new upstream version comes out. Breakage in a library can result in dozens of dependent
packages breaking.

Good practices for library packaging have been grouped in the library packaging guide (http:
/lwww.netfort.gr.jp/~dancer/column/libpkg-guide/).

6.7.3 Documentation

Be sure to follow the Policy on documentation (http://www.debian.org/doc/
debian-policy/ch-docs.html).

If your package contains documentation built from XML or SGML, we recommend you not
ship the XML or SGML source in the binary package(s). If users want the source of the docu-
mentation, they should retrieve the source package.

Policy specifies that documentation should be shipped in HTML format. We also recommend
shipping documentation in PDF and plain text format if convenient and quality output is pos-
sible. However, it is generally not appropriate to ship plain text versions of documentation
whose source format is HTML.

http://cvs.debian.org/boot-floppies/documentation/doc-check?rev=HEADcontent-type=text/vnd.viewcvs-markup
http://cvs.debian.org/boot-floppies/documentation/doc-check?rev=HEADcontent-type=text/vnd.viewcvs-markup
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/
http://www.netfort.gr.jp/~dancer/column/libpkg-guide/
http://www.debian.org/doc/debian-policy/ch-docs.html
http://www.debian.org/doc/debian-policy/ch-docs.html

Chapter 6. Best Packaging Practices 82

Major shipped manuals should register themselves with doc-base on installation. See the
doc-base package documentation for more information.

6.7.4 Specific types of packages

Several specific types of packages have special sub-policies and corresponding packaging rules
and practices:

® Perl related packages have a Perl policy (http://www.debian.org/doc/
packaging-manuals/perl-policy/), some examples of packages following
that policy are libdbd-pg-perl (binary perl module) or libmldbm-perl (arch
independent perl module).

¢ Python related packages have their python policy; see /usr/share/doc/python
/python-policy.txt.gz in the python package.

* Emacs related packages have the emacs policy (http://www.debian.org/doc/
packaging-manuals/debian-emacs-policy).

¢ Java related packages have their java policy (http://www.debian.org/doc/
packaging-manuals/java-policy/).

® Ocaml related packages have their own policy, found in /usr/share/doc/ocaml
/ocaml_packaging_policy.gz from the ocaml package. A good example is the
camlzip source package.

¢ Packages providing XML or SGML DTDs should conform to the recommendations found
in the sgml-base-doc package.

¢ Lisp packages should register themselves with common-lisp-controller , about
which see /usr/share/doc/common-lisp-controller/README.packaging

6.7.5 Architecture-independent data

It is not uncommon to have a large amount of architecture-independent data packaged with a
program. For example, audio files, a collection of icons, wallpaper patterns, or other graphic
files. If the size of this data is negligible compared to the size of the rest of the package, it’s
probably best to keep it all in a single package.

However, if the size of the data is considerable, consider splitting it out into a separate,
architecture-independent package (“_all.deb”). By doing this, you avoid needless duplication
of the same data into eleven or more .debs, one per each architecture. While this adds some
extra overhead into the Packages files, it saves a lot of disk space on Debian mirrors. Sepa-
rating out architecture-independent data also reduces processing time of lintian or linda
(see ‘Package lint tools” on page 98) when run over the entire Debian archive.

http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/perl-policy/
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy
http://www.debian.org/doc/packaging-manuals/debian-emacs-policy
http://www.debian.org/doc/packaging-manuals/java-policy/
http://www.debian.org/doc/packaging-manuals/java-policy/

Chapter 6. Best Packaging Practices 83

6.7.6 Needing a certain locale during build

If you need a certain locale during build, you can create a temporary file via this trick:

If you set LOCPATH to the equivalent of /usr/lib/locale, and LC_ALL to the name of the
locale you generate, you should get what you want without being root. Something like this:

LOCALE_PATH=debian/tmpdir/usr/lib/locale
LOCALE_NAME=en_IN
LOCALE_CHARSET=UTF-8

mkdir -p $LOCALE_PATH
localedef -i "$LOCALE_NAME.$LOCALE_CHARSET" -f "$LOCALE_CHARSET" "$LOCALE_PATH/{

Using the locale
LOCPATH=$LOCALE_PATH LC_ALL=$LOCALE_NAME.$LOCALE_CHARSET date

6.7.7 Make transition packages deborphan compliant

Deborphan is a program for helping users to detect which packages can safely be removed
from the system, i.e. the ones that have no packages depending on them. The default operation
is to search only within the libs and oldlibs sections, to hunt down unused libraries. But when
passed the right argument, it tries to catch other useless packages.

For example, with —guess-dummy, deborphan tries to search all transitional packages which
were needed for upgrade but which can now safely be removed. For that, it looks for the string
“dummy” or “transitional” in their short description.

So, when you are creating such a package, please make sure to add this text to your short
description. If you are looking for examples, just run:
apt-cache search .|grep dummy

or

apt-cache search .|grep transitional

6.7.8 Best practices for orig.tar.gz files

There are two kinds of original source tarballs: Pristine source and repackaged upstream
source.

Chapter 6. Best Packaging Practices 84

Pristine source

The defining characteristic of a pristine source tarball is that the .orig.tar.gz file is byte-for-byte
identical to a tarball officially distributed by the upstream author. ! This makes it possible to
use checksums to easily verify that all changes between Debian’s version and upstream’s are
contained in the Debian diff. Also, if the original source is huge, upstream authors and others
who already have the upstream tarball can save download time if they want to inspect your
packaging in detail.

There is no universally accepted guidelines that upstream authors follow regarding to the di-
rectory structure inside their tarball, but dpkg-source is nevertheless able to deal with most
upstream tarballs as pristine source. Its strategy is equivalent to the following:

1 It unpacks the tarball in an empty temporary directory by doing
zcat path/to/<packagename>_<upstream-version>.orig.tar.gz | tar xf -

2 If, after this, the temporary directory contains nothing but one di-
rectory and no other files, dpkg-source renames that directory to
<packagename>-<upstream-version>(.orig) . The name of the top-level
directory in the tarball does not matter, and is forgotten.

3 Otherwise, the upstream tarball must have been packaged without a common top-level
directory (shame on the upstream author!). In this case, dpkg-source renames the tem-
porary directory itself to <packagename>-<upstream-version>(.orig)

Repackaged upstream source

You should upload packages with a pristine source tarball if possible, but there are various
reasons why it might not be possible. This is the case if upstream does not distribute the
source as gzipped tar at all, or if upstream’s tarball contains non-DFSG-free material that you
must remove before uploading.

In these cases the developer must construct a suitable .orig.tar.gz file himself. We refer
to such a tarball as a “repackaged upstream source”. Note that a “repackaged upstream
source” is different from a Debian-native package. A repackaged source still comes with
Debian-specific changes in a separate .diff.gz and still has a version number composed
of <upstream-version> and <debian-revision>

There may be cases where it is desirable to repackage the source even though upstream dis-
tributes a .tar.gz that could in principle be used in its pristine form. The most obvious is if

'We cannot prevent upstream authors from changing the tarball they distribute without also upping the version
number, so there can be no guarantee that a pristine tarball is identical to what upstream currently distributing at
any point in time. All that can be expected is that it is identical to something that upstream once did distribute. If a
difference arises later (say, if upstream notices that he wasn’t using maximal comression in his original distribution
and then re-gzip s it), that’s just too bad. Since there is no good way to upload a new .orig.tar.gz for the same
version, there is not even any point in treating this situation as a bug.

Chapter 6. Best Packaging Practices 85

significant space savings can be achieved by recompressing the tar archive or by removing gen-
uinely useless cruft from the upstream archive. Use your own discretion here, but be prepared
to defend your decision if you repackage source that could have been pristine.

A repackaged .orig.tar.gz

1 must contain detailed information how the repackaged source was obtained, and how
this can be reproduced, in README.Debian-source or a similar file. This file should be
in the diffgz part of the Debian source package, usually in the debian directory, not
in the repackaged orig.tar.gz . Itis also a good idea to provide a get-orig-source
target in your debian/rules file that repeats the process, as described in the Pol-
icy Manual, Main building script: debian/rules (http://www.debian.org/doc/
debian-policy/ch-source.html#s-debianrules).

2 should not contain any file that does not come from the upstream author(s), or whose
contents has been changed by you. 2

3 should, except where impossible for legal reasons, preserve the entire building and
portablility infrastructure provided by the upstream author. For example, it is not a suffi-
cient reason for omitting a file that it is used only when building on MS-DOS. Similarly, a
Makefile provided by upstream should not be omitted even if the first thing your debian
rules does is to overwrite it by running a configure script.

(Rationale: 1t is common for Debian users who need to build software for non-Debian
platforms to fetch the source from a Debian mirror rather than trying to locate a canonical
upstream distribution point).

4 should use <packagename>-<upstream-version>.orig as the name of the top-
level directory in its tarball. This makes it possible to distinguish pristine tarballs from
repackaged ones. +

5 should be gzipped with maximal compression.

The canonical way to meet the latter two points is to let dpkg-source -b construct the
repackaged tarball from an unpacked directory.

Changing binary files in diff.gz

Sometimes it is necessary to change binary files contained in the original tarball, or to add
binary files that are not in it. If this is done by simply copying the files into the debianized
source tree, dpkg-source will not be able to handle this. On the other hand, according to
the guidelines given above, you cannot include such a changed binary file in a repackaged
orig.tar.gz . Instead, include the file in the debian directory in uuencode d (or similar)

2As a special exception, if the omission of non-free files would lead to the source failing to build without
assistance from the Debian diff, it might be appropriate to instead edit the files, omitting only the non-free parts of
them, and/or explain the situation in a README.Debian-source file in the root of the source tree. But in that case
please also urge the upstream author to make the non-free components easier seperable from the rest of the source.

http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules
http://www.debian.org/doc/debian-policy/ch-source.html#s-debianrules

Chapter 6. Best Packaging Practices 86

form 3. The file would then be decoded and copied to its place during the build process. Thus
the change will be visible quite easy.

Some packages use dbs to manage patches to their upstream source, and always create a new
orig.tar.gz file that contains the real orig.tar.gz in its toplevel directory. This is ques-
tionable with respect to the preference for pristine source. On the other hand, it is easy to
modify or add binary files in this case: Just put them into the newly created orig.tar.gz

file, besides the real one, and copy them to the right place during the build process.

*The file should have a name that makes it clear which binary file it encodes. Usually, some postfix indicating
the encoding should be appended to the original filename.

87

Chapter 7

Beyond Packaging

Debian is about a lot more than just packaging software and maintaining those packages. This
chapter contains information about ways, often really critical ways, to contribute to Debian
beyond simply creating and maintaining packages.

As a volunteer organization, Debian relies on the discretion of its members in choosing what
they want to work on and in choosing the most critical thing to spend their time on.

7.1 Bugreporting

We encourage you to file bugs as you find them in Debian packages. In fact, Debian develop-
ers are often the first line testers. Finding and reporting bugs in other developers’ packages
improves the quality of Debian.

Read the instructions for reporting bugs (http://www.debian.org/Bugs/Reporting) in
the Debian bug tracking system (http://www.debian.org/Bugs/).

Try to submit the bug from a normal user account at which you are likely to receive mail, so
that people can reach you if they need further information about the bug. Do not submit bugs
as root.

You can use a tool like reportbug(1) to submit bugs. It can automate and generally ease the
process.

Make sure the bug is not already filed against a package. Each package has a bug list eas-
ily reachable at http://bugs.debian.org/ packagename Utilities like querybts(1) can
also provide you with this information (and reportbug will usually invoke querybts before
sending, too).

Try to direct your bugs to the proper location. When for example your bug is about a package
which overwrites files from another package, check the bug lists for both of those packages in
order to avoid filing duplicate bug reports.

For extra credit, you can go through other packages, merging bugs which are reported more
than once, or tagging bugs ‘fixed” when they have already been fixed. Note that when you are

http://www.debian.org/Bugs/Reporting
http://www.debian.org/Bugs/

Chapter 7. Beyond Packaging 88

neither the bug submitter nor the package maintainer, you should not actually close the bug
(unless you secure permission from the maintainer).

From time to time you may want to check what has been going on with the bug
reports that you submitted. Take this opportunity to close those that you can’t re-
produce anymore. To find out all the bugs you submitted, you just have to visit
http://bugs.debian.org/from: <your-email-addr>

7.1.1 Reporting lots of bugs at once (mass bug filing)

Reporting a great number of bugs for the same problem on a great number of different pack-
ages — i.e., more than 10 —is a deprecated practice. Take all possible steps to avoid submitting
bulk bugs at all. For instance, if checking for the problem can be automated, add a new check
tolintian so that an error or warning is emitted.

If you report more than 10 bugs on the same topic at once, it is recommended that you send
a message to <debian-devel@Iists.debian.org> describing your intention before sub-
mitting the report, and mentioning the fact in the subject of your mail. This will allow other
developers to verify that the bug is a real problem. In addition, it will help prevent a situation
in which several maintainers start filing the same bug report simultaneously.

Note that when sending lots of bugs on the same subject, you should send the bug report to
<maintonly@bugs.debian.org> so that the bug report is not forwarded to the bug distri-
bution mailing list.

7.2 Quality Assurance effort

721 Daily work

Even though there is a dedicated group of people for Quality Assurance, QA duties are not
reserved solely for them. You can participate in this effort by keeping your packages as bug-
free as possible, and as lintian-clean (see ‘lintian " on page 98) as possible. If you do not find
that possible, then you should consider orphaning some of your packages (see ‘Orphaning a
package’ on page 47). Alternatively, you may ask the help of other people in order to catch
up with the backlog of bugs that you have (you can ask for help on <debian-qa@lists.
debian.org> or <debian-devel@lists.debian.org>). At the same time, you can look
for co-maintainers (see ‘Collaborative maintenance” on page 57).

7.2.2 Bug squashing parties

From time to time the QA group organizes bug squashing parties to get rid of as many prob-
lems as possible. They are announced on <debian-devel-announce@lists.debian.
org> and the announcement explains which area will be the focus of the party: usually they

Chapter 7. Beyond Packaging 89

focus on release critical bugs but it may happen that they decide to help finish a major upgrade
(like a new perl version which requires recompilation of all the binary modules).

The rules for non-maintainer uploads differ during the parties because the announcement of
the party is considered prior notice for NMU. If you have packages that may be affected by the
party (because they have release critical bugs for example), you should send an update to each
of the corresponding bug to explain their current status and what you expect from the party.
If you don’t want an NMU, or if you're only interested in a patch, or if you will deal yourself
with the bug, please explain that in the BTS.

People participating in the party have special rules for NMU, they can NMU without prior
notice if they upload their NMU to DELAYED/3-day at least. All other NMU rules apply as
usually; they should send the patch of the NMU to the BTS (to one of the open bugs fixed by
the NMU, or to a new bug, tagged fixed). They should also respect any particular wishes of
the maintainer.

If you don’t feel confident about doing an NMU, just send a patch to the BTS. It’s far better
than a broken NMU.

7.3 Contacting other maintainers

During your lifetime within Debian, you will have to contact other maintainers for various
reasons. You may want to discuss a new way of cooperating between a set of related packages,
or you may simply remind someone that a new upstream version is available and that you
need it.

Looking up the email address of the maintainer for the package can be distracting. Fortunately,
there is a simple email alias, <package>@packages.debian.org , which provides a way to
email the maintainer, whatever their individual email address (or addresses) may be. Replace
<package> with the name of a source or a binary package.

You may also be interested in contacting the persons who are subscribed to a given source
package via ‘The Package Tracking System’” on page 25. You can do so by using the
<package-name>@ packages.ga.debian.org email address.

7.4 Dealing with inactive and/or unreachable maintainers

If you notice that a package is lacking maintenance, you should make sure that the maintainer
is active and will continue to work on their packages. It is possible that they are not active
any more, but haven’t registered out of the system, so to speak. On the other hand, it is also
possible that they just need a reminder.

There is a simple system (the MIA database) in which information about maintainers who are
deemed Missing In Action are recorded. When a member of the QA group contacts an inactive
maintainer or finds more information about one, this is recorded in the MIA database. This
system is available in /org/qa.debian.org/mia on the host qa.debian.org, and can be queried

Chapter 7. Beyond Packaging 90

with a tool known as mia-history . By default, mia-history shows information about
every person it knows about, but it accepts regular expressions as arguments which it uses to
match user names.

mia-history --help

shows which arguments are accepted. If you find that no information has been recorded about
an inactive maintainer already, or that you can add more information, you should generally
proceed as follows.

The first step is to politely contact the maintainer, and wait for a response for a reasonable
time. It is quite hard to define “reasonable time”, but it is important to take into account that
real life is sometimes very hectic. One way to handle this would be to send a reminder after
two weeks.

If the maintainer doesn’t reply within four weeks (a month), one can assume that a response
will probably not happen. If that happens, you should investigate further, and try to gather as
much useful information about the maintainer in question as possible. This includes:

¢ The “echelon” information available through the developers” LDAP database (https:
/ldb.debian.org/), which indicates when the developer last has posted to a Debian
mailing list. (This includes uploads via debian-*-changes lists.) Also, remember to check
whether the maintainer is marked as “on vacation” in the database.

¢ The number of packages this maintainer is responsible for, and the condition of those
packages. In particular, are there any RC bugs that have been open for ages? Further-
more, how many bugs are there in general? Another important piece of information is
whether the packages have been NMUed, and if so, by whom.

¢ Is there any activity of the maintainer outside of Debian? For example, they might have
posted something recently to non-Debian mailing lists or news groups.

One big problem are packages which were sponsored — the maintainer is not an official Debian
developer. The echelon information is not available for sponsored people, for example, so you
need to find and contact the Debian developer who has actually uploaded the package. Given
that they signed the package, they’re responsible for the upload anyhow, and should know
what happened to the person they sponsored.

It is also allowed to post a query to <debian-devel@lists.debian.org> , asking if any-
one is aware of the whereabouts of the missing maintainer.

Once you have gathered all of this, you can contact <debian-ga@Iists.debian.org>

People on this alias will use the information you provided in order to decide how to proceed.
For example, they might orphan one or all of the packages of the maintainer. If a packages
has been NMUed, they might prefer to contact the NMUer before orphaning the package —
perhaps the person who has done the NMU is interested in the package.

One last word: please remember to be polite. We are all volunteers and cannot dedicate all of
our time to Debian. Also, you are not aware of the circumstances of the person who is involved.

https://db.debian.org/
https://db.debian.org/

Chapter 7. Beyond Packaging 91

Perhaps they might be seriously ill or might even had died — you do not know who may be
on the receiving side. Imagine how a relative will feel if they read the e-mail of the deceased
and find a very impolite, angry and accusing message!)

On the other hand, although we are volunteers, we do have a responsibility. So you can stress
the importance of the greater good — if a maintainer does not have the time or interest any-
more, they should “let go” and give the package to someone with more time.

7.5 Interacting with prospective Debian developers

Debian’s success depends on its ability to attract and retain new and talented volunteers. If
you are an experienced developer, we recommend that you get involved with the process of
bringing in new developers. This section describes how to help new prospective developers.

7.5.1 Sponsoring packages

Sponsoring a package means uploading a package for a maintainer who is not able to do it on
their own, a new maintainer applicant. Sponsoring a package also means accepting responsi-
bility for it.

New maintainers usually have certain difficulties creating Debian packages — this is quite
understandable. That is why the sponsor is there, to check the package and verify that it is good
enough for inclusion in Debian. (Note that if the sponsored package is new, the ftpmasters will
also have to inspect it before letting it in.)

Sponsoring merely by signing the upload or just recompiling is definitely not recommended.
You need to build the source package just like you would build a package of your own. Re-
member that it doesn’t matter that you left the prospective developer’s name both in the
changelog and the control file, the upload can still be traced to you.

If you are an application manager for a prospective developer, you can also be their sponsor.
That way you can also verify how the applicant is handling the "Tasks and Skills” part of their
application.

7.5.2 Managing sponsored packages

By uploading a sponsored package to Debian, you are certifying that the package meets min-
imum Debian standards. That implies that you must build and test the package on your own
system before uploading.

You cannot simply upload a binary .deb from the sponsoree. In theory, you should only ask
for the diff file and the location of the original source tarball, and then you should download
the source and apply the diff yourself. In practice, you may want to use the source package
built by your sponsoree. In that case, you have to check that they haven't altered the upstream
files in the .orig.tar.gz file that they’re providing.

Chapter 7. Beyond Packaging 92

Do not be afraid to write the sponsoree back and point out changes that need to be made. It
often takes several rounds of back-and-forth email before the package is in acceptable shape.
Being a sponsor means being a mentor.

Once the package meets Debian standards, build and sign it with
dpkg-buildpackage -k KEY-ID

before uploading it to the incoming directory. Of course, you can also use any part of your
KEY-ID, as long as it’s unique in your secret keyring.

The Maintainer field of the control file and the changelog should list the person who did
the packaging, i.e., the sponsoree. The sponsoree will therefore get all the BTS mail about the
package.

If you prefer to leave a more evident trace of your sponsorship job, you can add a line stating
it in the most recent changelog entry.

You are encouraged to keep tabs on the package you sponsor using ‘The Package Tracking
System’ on page 25.

7.5.3 Advocating new developers

See the page about advocating a prospective developer (http://www.debian.org/devel/
join/nm-advocate) at the Debian web site.

7.5.4 Handling new maintainer applications

Please see Checklist for Application Managers (http://www.debian.org/devel/join/
nm-amchecklist) at the Debian web site.

http://www.debian.org/devel/join/nm-advocate
http://www.debian.org/devel/join/nm-advocate
http://www.debian.org/devel/join/nm-amchecklist
http://www.debian.org/devel/join/nm-amchecklist

93

Chapter 8

Internationalizing, translating, being
internationalized and being translated

Debian supports an ever-increasing number of natural languages. Even if you are a native
English speaker and do not speak any other language, it is part of your duty as a maintainer to
be aware of issues of internationalization (abbreviated i18n because there are 18 letters between
the 'i” and the 'n’ in internationalization). Therefore, even if you are ok with English-only
programs, you should read most of this chapter.

According to Introduction to i18n (http://www.debian.org/doc/manuals/
intro-i18n/) from Tomohiro KUBOTA, “I18N (internationalization) means modifica-
tion of a software or related technologies so that a software can potentially handle multiple
languages, customs, and so on in the world.” while “L10N (localization) means implementa-
tion of a specific language for an already internationalized software.”

110n and i18n are interconnected, but the difficulties related to each of them are very different.
It’s not really difficult to allow a program to change the language in which texts are displayed
based on user settings, but it is very time consuming to actually translate these messages. On
the other hand, setting the character encoding is trivial, but adapting the code to use several
character encodings is a really hard problem.

Setting aside the i18n problems, where no general guideline can be given, there is actually no
central infrastructure for 110n within Debian which could be compared to the dbuild mecha-
nism for porting. So most of the work has to be done manually.

8.1 How translations are handled within Debian

Handling translation of the texts contained in a package is still a manual task, and the process
depends on the kind of text you want to see translated.

For program messages, the gettext infrastructure is used most of the time. Most of the time,
the translation is handled upstream within projects like the Free Translation Project (http:
/lwww.iro.umontreal.ca/contrib/po/HTML/), the Gnome translation Project (http:

http://www.debian.org/doc/manuals/intro-i18n/
http://www.debian.org/doc/manuals/intro-i18n/
http://www.iro.umontreal.ca/contrib/po/HTML/
http://www.iro.umontreal.ca/contrib/po/HTML/
http://developer.gnome.org/projects/gtp/
http://developer.gnome.org/projects/gtp/

Chapter 8. Internationalizing, translating, being internationalized and being translated 94

/l[developer.gnome.org/projects/gtp/) or the KDE one (http://i18n.kde.org/).
The only centralized resource within Debian is the Central Debian translation statistics (http:
/lwww.debian.org/intl/[10n/), where you can find some statistics about the translation
files found in the actual packages, but no real infrastructure to ease the translation process.

An effort to translate the package descriptions started long ago, even if very little support
is offered by the tools to actually use them (i.e., only APT can use them, when configured
correctly). Maintainers don’t need to do anything special to support translated package de-
scriptions; translators should use the DDTP (http://ddtp.debian.org/).

For debconf templates, maintainers should use the po-debconf package to ease the work of
translators, who could use the DDTP to do their work (but the French and Brazilian teams
don’t). Some statistics can be found both on the DDTP site (about what is actually translated),
and on the Central Debian translation statistics (http://www.debian.org/intl/|10n/)
site (about what is integrated in the packages).

For web pages, each 110n team has access to the relevant CVS, and the statistics are available
from the Central Debian translation statistics site.

For general documentation about Debian, the process is more or less the same than for the web
pages (the translators have access to the CVS), but there are no statistics pages.

For package-specific documentation (man pages, info documents, other formats), almost ev-
erything remains to be done.

Most notably, the KDE project handles translation of its documentation in the same way as its
program messages.

There is an effort to handle Debian-specific man pages within a specific CVS repository (http:
/lcvs.debian.org/manpages/?cvsroot=debian-doc

8.2 I18N & L10N FAQ for maintainers

This is a list of problems that maintainers may face concerning i18n and 110n. While reading
this, keep in mind that there is no real consensus on these points within Debian, and that this
is only advice. If you have a better idea for a given problem, or if you disagree on some points,
feel free to provide your feedback, so that this document can be enhanced.

8.2.1 How to get a given text translated

To translate package descriptions or debconf templates, you have nothing to do; the DDTP
infrastructure will dispatch the material to translate to volunteers with no need for interaction
from your part.

For all other material (gettext files, man pages, or other documentation), the best solution is to
put your text somewhere on the Internet, and ask on debian-i18n for a translation in different
languages. Some translation team members are subscribed to this list, and they will take care of
the translation and of the reviewing process. Once they are done, you will get your translated
document from them in your mailbox.

http://developer.gnome.org/projects/gtp/
http://developer.gnome.org/projects/gtp/
http://i18n.kde.org/
http://www.debian.org/intl/l10n/
http://www.debian.org/intl/l10n/
http://ddtp.debian.org/
http://www.debian.org/intl/l10n/
http://cvs.debian.org/manpages/?cvsroot=debian-doc
http://cvs.debian.org/manpages/?cvsroot=debian-doc

Chapter 8. Internationalizing, translating, being internationalized and being translated 95

8.2.2 How to get a given translation reviewed

From time to time, individuals translate some texts in your package and will ask you for in-
clusion of the translation in the package. This can become problematic if you are not fluent in
the given language. It is a good idea to send the document to the corresponding 110n mailing
list, asking for a review. Once it has been done, you should feel more confident in the quality
of the translation, and feel safe to include it in your package.

8.2.3 How to get a given translation updated

If you have some translations of a given text lying around, each time you update the original,
you should ask the previous translator to update the translation with your new changes. Keep
in mind that this task takes time; at least one week to get the update reviewed and all.

If the translator is unresponsive, you may ask for help on the corresponding 110n mailing list.
If everything fails, don’t forget to put a warning in the translated document, stating that the
translation is somehow outdated, and that the reader should refer to the original document if
possible.

Avoid removing a translation completely because it is outdated. Old documentation is often
better than no documentation at all for non-English speakers.

8.2.4 How to handle a bug report concerning a translation

The best solution may be to mark the bug as “forwarded to upstream”, and forward it to both
the previous translator and his/her team (using the corresponding debian-110n-XXX mailing
list).

8.3 I18N & L10N FAQ for translators

While reading this, please keep in mind that there is no general procedure within Debian con-
cerning these points, and that in any case, you should collaborate with your team and the
package maintainer.

8.3.1 How to help the translation effort

Choose what you want to translate, make sure that nobody is already working on it (using
your debian-110n-XXX mailing list), translate it, get it reviewed by other native speakers on
your 110n mailing list, and provide it to the maintainer of the package (see next point).

Chapter 8. Internationalizing, translating, being internationalized and being translated 96

8.3.2 How to provide a translation for inclusion in a package

Make sure your translation is correct (asking for review on your 110n mailing list) before pro-
viding it for inclusion. It will save time for everyone, and avoid the chaos resulting in having
several versions of the same document in bug reports.

The best solution is to fill a regular bug containing the translation against the package. Make
sure to use the 'PATCH’ tag, and to not use a severity higher than "wishlist’, since the lack of
translation never prevented a program from running.

8.4 Best current practice concerning 110n

* As a maintainer, never edit the translations in any way (even to reformat the layout)
without asking to the corresponding 110n mailing list. You risk for example to break the
encoding of the file by doing so. Moreover, what you consider as an error can be right
(or even needed) in the given language.

* As a translator, if you find an error in the original text, make sure to report it. Translators
are often the most attentive readers of a given text, and if they don’t report the errors
they find, nobody will.

¢ In any case, remember that the major issue with 110n is that it requires several people to
cooperate, and that it is very easy to start a flamewar about small problems because of
misunderstandings. So if you have problems with your interlocutor, ask for help on the
corresponding 110n mailing list, on debian-i18n, or even on debian-devel (but beware,
110n discussions very often become flamewars on that list :)

¢ In any case, cooperation can only be achieved with mutual respect.

97

Appendix A

Overview of Debian Maintainer Tools

This section contains a rough overview of the tools available to maintainers. The following is
by no means complete or definitive, but just a guide to some of the more popular tools.

Debian maintainer tools are meant to aid developers and free their time for critical tasks. As
Larry Wall says, there’s more than one way to do it.

Some people prefer to use high-level package maintenance tools and some do not. Debian is
officially agnostic on this issue; any tool which gets the job done is fine. Therefore, this section
is not meant to stipulate to anyone which tools they should use or how they should go about
their duties of maintainership. Nor is it meant to endorse any particular tool to the exclusion
of a competing tool.

Most of the descriptions of these packages come from the actual package descriptions them-
selves. Further information can be found in the package documentation itself. You can also see
more info with the command apt-cache show <package-name>

A.1 Core tools

The following tools are pretty much required for any maintainer.

A.1.1 dpkg-dev

dpkg-dev contains the tools (including dpkg-source) required to unpack, build, and up-
load Debian source packages. These utilities contain the fundamental, low-level functionality
required to create and manipulate packages; as such, they are essential for any Debian main-
tainer.

A.1.2 debconf

debconf provides a consistent interface to configuring packages interactively. It is user in-
terface independent, allowing end-users to configure packages with a text-only interface, an

Chapter A. Overview of Debian Maintainer Tools 98

HTML interface, or a dialog interface. New interfaces can be added as modules.
You can find documentation for this package in the debconf-doc package.

Many feel that this system should be used for all packages which require interactive configu-
ration; see ‘Configuration management with debconf " on page 74. debconf is not currently
required by Debian Policy, but that may change in the future.

A.1.3 fakeroot

fakeroot simulates root privileges. This enables you to build packages without being root
(packages usually want to install files with root ownership). If you have fakeroot installed,
you can build packages as a regular user: dpkg-buildpackage -rfakeroot

A.2 Package lint tools

According to the Free On-line Dictionary of Computing (FOLDOC), ‘lint’ is “a Unix C language
processor which carries out more thorough checks on the code than is usual with C compilers.”
Package lint tools help package maintainers by automatically finding common problems and
policy violations in their packages.

A.2.1 lintian

lintian dissects Debian packages and emits information about bugs and policy violations.
It contains automated checks for many aspects of Debian policy as well as some checks for
COMmon errors.

You should periodically get the newest lintian ~ from “unstable” and check over all your pack-
ages. Notice that the -i option provides detailed explanations of what each error or warning
means, what its basis in Policy is, and commonly how you can fix the problem.

Refer to ‘Testing the package’ on page 32 for more information on how and when to use Lintian.

You can also see a summary of all problems reported by Lintian on your packages at http:
/Nintian.debian.org/ . These reports contain the latest lintian ~ output for the whole
development distribution (“unstable”).

A.2.2 linda

linda is another package linter. It is similar to lintian ~ but has a different set of checks. Its
written in Python rather than Perl.

http://lintian.debian.org/
http://lintian.debian.org/

Chapter A. Overview of Debian Maintainer Tools 99

A.2.3 debdiff

debdiff (from the devscripts package, ‘devscripts ” on page 102) compares file lists and
control files of two packages. It is a simple regression test, as it will help you notice if the
number of binary packages has changed since the last upload, or if something has changed in
the control file. Of course, some of the changes it reports will be all right, but it can help you
prevent various accidents.

You can run it over a pair of binary packages:
debdiff package_1-1 arch.deb package_2-1 arch.deb
Or even a pair of changes files:
debdiff package_1-1 arch.changes package_2-1 arch.changes

For more information please see debdiff(1)

A.3 Helpers for debian/rules

Package building tools make the process of writing debian/rules tiles easier. See ‘Helper
scripts” on page 65 for more information about why these might or might not be desired.

A.3.1 debhelper

debhelper is a collection of programs which can be used in debian/rules to automate
common tasks related to building binary Debian packages. debhelper includes programs to
install various files into your package, compress files, fix file permissions, and integrate your
package with the Debian menu system.

Unlike some approaches, debhelper is broken into several small, simple commands which
act in a consistent manner. As such, it allows more fine-grained control than some of the other
“debian/rules tools”.

There are a number of little debhelper add-on packages, too transient to document. You can
see the list of most of them by doing apt-cache search ~dh-

A.3.2 debmake

debmake, a precursor to debhelper , is a more coarse-grained debian/rules assistant. It
includes two main programs: deb-make , which can be used to help a maintainer convert a
regular (non-Debian) source archive into a Debian source package; and debstd , which incor-
porates in one big shot the same sort of automated functions that one finds in debhelper

The consensus is that debmake is now deprecated in favor of debhelper . However, it's not a
bug to use debmake.

Chapter A. Overview of Debian Maintainer Tools 100

A.3.3 dh-make

The dh-make package contains dh_make, a program that creates a skeleton of files necessary
to build a Debian package out of a source tree. As the name suggests, dh_make is a rewrite of
debmake and its template files use dh_* programs from debhelper

While the rules files generated by dh_make are in general a sufficient basis for a working
package, they are still just the groundwork: the burden still lies on the maintainer to finely
tune the generated files and make the package entirely functional and Policy-compliant.

A.34 vyada

yada is another packaging helper tool. It uses a debian/packages file to auto-generate
debian/rules and other necessary files in the debian/ subdirectory. The debian
/packages file contains instruction to build packages and there is no need to create any
Makefile files. There is possibility to use macro engine similar to the one used in SPECS
tiles from RPM source packages.

For more informations see YADA site (http://yada.alioth.debian.org/).

A.3.5 equivs

equivs is another package for making packages. It is often suggested for local use if you need
to make a package simply to fulfill dependencies. It is also sometimes used when making
“meta-packages”, which are packages whose only purpose is to depend on other packages.

A4 Package builders

The following packages help with the package building process, general driving
dpkg-buildpackage as well as handling supporting tasks.

A.4.1 cvs-buildpackage

cvs-buildpackage provides the capability to inject or import Debian source packages into
a CVS repository, build a Debian package from the CVS repository, and helps in integrating
upstream changes into the repository.

These utilities provide an infrastructure to facilitate the use of CVS by Debian maintainers.
This allows one to keep separate CVS branches of a package for stable, unstable and possibly
experimental distributions, along with the other benefits of a version control system.

http://yada.alioth.debian.org/

Chapter A. Overview of Debian Maintainer Tools 101

A.4.2 debootstrap

The debootstrap package and script allows you to “bootstrap” a Debian base system into
any part of your filesystem. By “base system”, we mean the bare minimum of packages re-
quired to operate and install the rest of the system.

Having a system like this can be useful in many ways. For instance, you can chroot into it if
you want to test your build dependencies. Or you can test how your package behaves when
installed into a bare base system. Chroot builders use this package; see below.

A.4.3 pbuilder

pbuilder constructs a chrooted system, and builds a package inside the chroot. It is very
useful to check that a package’s build-dependencies are correct, and to be sure that unnecessary
and wrong build dependencies will not exist in the resulting package.

A related package is pbuilder-uml , which goes even further by doing the build within a
User Mode Linux environment.

A.4.4 sbuild

sbuild is another automated builder. It can use chrooted environments as well. It can be used
stand-alone, or as part of a networked, distributed build environment. As the latter, it is part
of the system used by porters to build binary packages for all the available architectures. See
‘buildd " on page 52 for more information, and http://buildd.debian.org/ to see the
system in action.

A.5 Package uploaders

The following packages help automate or simplify the process of uploading packages into the
official archive.

A.5.1 dupload
dupload is a package and a script to automatically upload Debian packages to the Debian

archive, to log the upload, and to send mail about the upload of a package. You can configure
it for new upload locations or methods.

A.5.2 dput

The dput package and script does much the same thing as dupload , but in a different way.
It has some features over dupload , such as the ability to check the GnuPG signature and

http://buildd.debian.org/

Chapter A. Overview of Debian Maintainer Tools 102

checksums before uploading, and the possibility of running dinstall in dry-run mode after
the upload.

A.5.3 dcut

The dcut script (part of the package ‘dput ” on the preceding page) helps in removing files
from the ftp upload directory.

A.6 Maintenance automation

The following tools help automate different maintenance tasks, from adding changelog entries
or signature lines and looking up bugs in Emacs to making use of the newest and official
config.sub

A.6.1 devscripts

devscripts is a package containing wrappers and tools which are very helpful for maintain-
ing your Debian packages. Example scripts include debchange and dch, which manipulate
your debian/changelog file from the command-line, and debuild , which is a wrapper
around dpkg-buildpackage . The bts utility is also very helpful to update the state of bug
reports on the command line. uscan can be used to watch for new upstream versions of your
packages. debrsign can be used to remotely sign a package prior to upload, which is nice
when the machine you build the package on is different from where your GPG keys are.

See the devscripts(1) manual page for a complete list of available scripts.

A.6.2 autotools-dev

autotools-dev contains best practices for people who maintain packages which use
autoconf and/or automake . Also contains canonical config.sub and config.guess
files which are known to work on all Debian ports.

A.6.3 dpkg-repack

dpkg-repack creates Debian package file out of a package that has already been installed. If
any changes have been made to the package while it was unpacked (e.g., files in /etc were
modified), the new package will inherit the changes.

This utility can make it easy to copy packages from one computer to another, or to recreate
packages which are installed on your system but no longer available elsewhere, or to save the
current state of a package before you upgrade it.

Chapter A. Overview of Debian Maintainer Tools 103

A.6.4 alien

alien converts binary packages between various packaging formats, including Debian, RPM
(RedHat), LSB (Linux Standard Base), Solaris, and Slackware packages.

A.6.5 debsums

debsums checks installed packages against their MD5 sums. Note that not all packages have
MDS5 sums, since they aren’t required by Policy.

A.6.6 dpkg-dev-el

dpkg-dev-el is an Emacs lisp package which provides assistance when editing some of the
files in the debian directory of your package. For instance, there are handy functions for
listing a package’s current bugs, and for finalizing the latest entry in a debian/changelog
file.

A.6.7 dpkg-depcheck

dpkg-depcheck (from the devscripts package, ‘devscripts ’ on the preceding page) runs
a command under strace to determine all the packages that were used by the said command.

For Debian packages, this is useful when you have to compose a Build-Depends line for
your new package: running the build process through dpkg-depcheck will provide you with
a good first approximation of the build-dependencies. For example:

dpkg-depcheck -b debian/rules build
dpkg-depcheck can also be used to check for run-time dependencies, especially if your pack-

age uses exec(2) to run other programs.

For more information please see dpkg-depcheck(1)

A.7 Porting tools
The following tools are helpful for porters and for cross-compilation.

A.7.1 quinn-diff

quinn-diff is used to locate the differences from one architecture to another. For instance, it
could tell you which packages need to be ported for architecture Y, based on architecture X.

Chapter A. Overview of Debian Maintainer Tools 104

A.7.2 dpkg-cross
dpkg-cross is a tool for installing libraries and headers for cross-compiling in a way similar

to dpkg . Furthermore, the functionality of dpkg-buildpackage and dpkg-shlibdeps is
enhanced to support cross-compiling.

A.8 Documentation and information

The following packages provide information for maintainers or help with building documen-
tation.

A.8.1 debiandoc-sgml
debiandoc-sgml provides the DebianDoc SGML DTD, which is commonly used for Debian

documentation. This manual, for instance, is written in DebianDoc. It also provides scripts for
building and styling the source to various output formats.

Documentation for the DTD can be found in the debiandoc-sgml-doc package.
A.8.2 debian-keyring

Contains the public GPG and PGP keys of Debian developers. See ‘Maintaining your public
key’ on page 7 and the package documentation for more information.

A.8.3 debview

debview provides an Emacs mode for viewing Debian binary packages. This lets you examine
a package without unpacking it.

	Scope of This Document
	Applying to Become a Maintainer
	Getting started
	Debian mentors and sponsors
	Registering as a Debian developer

	Debian Developer's Duties
	Maintaining your Debian information
	Maintaining your public key
	Voting
	Going on vacation gracefully
	Coordination with upstream developers
	Managing release-critical bugs
	Retiring

	Resources for Debian Developers
	Mailing lists
	Basic rules for use
	Core development mailing lists
	Special lists
	Requesting new development-related lists

	IRC channels
	Documentation
	Debian machines
	The bugs server
	The ftp-master server
	The non-US server
	The www-master server
	The people web server
	The CVS server
	chroots to different distributions

	The Developers Database
	The Debian archive
	Sections
	Architectures
	Packages
	Distributions
	Release code names

	Debian mirrors
	The Incoming system
	Package information
	On the web
	The madison utility

	The Package Tracking System
	The PTS email interface
	Filtering PTS mails
	Forwarding CVS commits in the PTS
	The PTS web interface

	Developer's packages overview
	Debian *Forge: Alioth

	Managing Packages
	New packages
	Recording changes in the package
	Testing the package
	Layout of the source package
	Picking a distribution
	Special case: uploads to the stable distribution
	Special case: uploads to testing/testing-proposed-updates

	Uploading a package
	Uploading to ftp-master
	Uploading to non-US
	Delayed uploads
	Security uploads
	Other upload queues
	Notification that a new package has been installed

	Specifying the package section, subsection and priority
	Handling bugs
	Monitoring bugs
	Responding to bugs
	Bug housekeeping
	When bugs are closed by new uploads
	Handling security-related bugs

	Moving, removing, renaming, adopting, and orphaning packages
	Moving packages
	Removing packages
	Replacing or renaming packages
	Orphaning a package
	Adopting a package

	Porting and being ported
	Being kind to porters
	Guidelines for porter uploads
	Porting infrastructure and automation

	Non-Maintainer Uploads (NMUs)
	How to do a NMU
	NMU version numbering
	Source NMUs must have a new changelog entry
	Source NMUs and the Bug Tracking System
	Building source NMUs
	Acknowledging an NMU
	NMU vs QA uploads
	Who can do an NMU
	How dak detects NMUs
	Terminology

	Collaborative maintenance
	The testing distribution
	Basics
	Updates from unstable
	Direct updates to testing
	Frequently asked questions

	Best Packaging Practices
	Best practices for =1spdebian /rules
	Helper scripts
	Separating your patches into multiple files
	Multiple binary packages

	Best practices for =1spdebian /control
	General guidelines for package descriptions
	The package synopsis, or short description
	The long description
	Upstream home page

	Best practices for =1spdebian /changelog
	Writing useful changelog entries
	Common misconceptions about changelog entries
	Common errors in changelog entries
	Supplementing changelogs with NEWS.Debian files

	Best practices for maintainer scripts
	Configuration management with debconf
	Do not abuse debconf
	General recommendations for authors and translators
	Templates fields definition
	Templates fields specific style guide

	Internationalization
	Handling debconf translations
	Internationalized documentation

	Common packaging situations
	Packages using autoconf/automake
	Libraries
	Documentation
	Specific types of packages
	Architecture-independent data
	Needing a certain locale during build
	Make transition packages deborphan compliant
	Best practices for =1sporig.tar.gz files

	Beyond Packaging
	Bug reporting
	Reporting lots of bugs at once (mass bug filing)

	Quality Assurance effort
	Daily work
	Bug squashing parties

	Contacting other maintainers
	Dealing with inactive and/or unreachable maintainers
	Interacting with prospective Debian developers
	Sponsoring packages
	Managing sponsored packages
	Advocating new developers
	Handling new maintainer applications

	Internationalizing, translating, being internationalized and being translated
	How translations are handled within Debian
	I18N & L10N FAQ for maintainers
	How to get a given text translated
	How to get a given translation reviewed
	How to get a given translation updated
	How to handle a bug report concerning a translation

	I18N & L10N FAQ for translators
	How to help the translation effort
	How to provide a translation for inclusion in a package

	Best current practice concerning l10n

	Overview of Debian Maintainer Tools
	Core tools
	dpkg-dev
	debconf
	fakeroot

	Package lint tools
	lintian
	linda
	debdiff

	Helpers for =1spdebian /rules
	debhelper
	debmake
	dh-make
	yada
	equivs

	Package builders
	cvs-buildpackage
	debootstrap
	pbuilder
	sbuild

	Package uploaders
	dupload
	dput
	dcut

	Maintenance automation
	devscripts
	autotools-dev
	dpkg-repack
	alien
	debsums
	dpkg-dev-el
	dpkg-depcheck

	Porting tools
	quinn-diff
	dpkg-cross

	Documentation and information
	debiandoc-sgml
	debian-keyring
	debview

