Generic Canvas documentation notes

This document contains important information that should be documented in the developer manual.
Requirements

The Generic Canvas (GC) is meant to be a universal means to visualize a hierarchy of all kind of data structures and objects. In the first version this data will be a tree of GRT (Generic Runtime) entries that reflect the structure of a database. Hence the data to visualize consists mainly of tables, columns, indexes and the like. Each of these types gets a visible image (a figure) that helps to identify and manipulate the particular object.

A figure reacts in various ways to mouse input events. So it can be shown as "hot" or selected. It can be expanded and collapsed as a whole or parts of it. It can be dragged around and can be connected to other figures. It has the ability to adjust itself to its content if no explicit size is given and its actual layout can be defined using an external description and can dynamically be changed. We have worked out a generic way to define layout information for each different object (Table, View, SP etc.) from our GRT system. An XML format is that is very similar to that of DIA to define figures and expanded it for additional things we need.

The whole implementation must be as platform-independent as possible. There are a few issues, which are discussed in an own paragraph below.

Rendering engine

For platform independence most of GC is written in C++. For image rendering OpenGL is used, which is available on many platforms for free, including Windows, Linux and Mac OS X. The use of OpenGL frees us from working out the ground work and helps us to start at a higher level. Currently only two dimensions are used with an orthogonal projection to maintain the metaphor of a canvas. OpenGL allows texturing objects and to define lights and view points (cameras). Additionally, it is hardware accelerated by almost all graphic boards available today to provide the system with an extremely fast and full featured rendering result even for very complex scenes with thousands of objects. A description of the OpenGL 1.1 APIs can be read in the OpenGL Red Book.

Basic structure

On top of the rendering engine a layer is drawn that manages a list of rendering commands, which can be defined by the application. All of these commands form a figure that can be manipulated as a whole. Each figure can have an unlimited number of sub figures that get transformed collectively by whatever transformation is given for the parent figure. The structure can recursively be continued forming so a tree for the entire scene.

Figure management

GC will create a scene structure on request of a higher level that gets everything that is needed to define the scene. This includes figures, textures, lights and cameras (lights and cameras are not yet used). GC supports PNG (portable network graphic) image files for texturing. Since it is easy to convert other image formats to PNG there is no support for any other image format.

In order to define figures dynamically GC supports a very simple scripting language, which is discussed in the next paragraph.

Figures are named and must have a unique name throughout the whole scene. Figures can be accessed by name and their name can be used in the figure script to address it for inclusion. The same holds true for textures, except that they cannot be used standalone. Textures are kept by the canvas and accessed via their name by the figures.

For simplicity GC holds a set of predefined figures for basic geometric shapes like boxes, circles and the like. These can be used in the figures to build more complex objects.

Figure scripting

Figures are made of simple primitives like rectangle, circle, line, polyline etc. In order to make construction of hierarchical structures possible, perhaps with predefined figures used multiple times within other objects, it is advisable to describe figures within a bounding box of dimension 1 and located at (0, 0). Parent objects can then better transform and move them around. It might be simpler to place a figure at the center of the parent's coordinate system and have it extend to 1 in all directions, e.g. for a circle or an ellipse.

The format used to describe figures is a simplified derivation of the SVG specification. Line, polyline, polygon, rectangle, circle and ellipse elements are supported. In addition support is built-in for additional objects like box and text. For increased quality texturing is supported too.

A number of connection points can be associated with the figure. They are specified in the same coordinate system as the figure description.

In addition to standalone text elements a text box can be associated with the figure. The figure layer will make sure that the text entered into it fits the figure by resizing the figure if necessary, if no explicit size is given. The text box is specified in the same units as the figure.

Layout information is stored in one or separated xml files, but a central document must be defined that includes either directly or via xml-include the other files. The id of a layout definition must match the name of a GRT element to be recognized and associated (case sensitive). Non-referenced entries are ignored while non-existing entries result in an error while parsing.

A typical layout file may look something like this:

 <?xml version="1.0"?>

 <gc-layout xmlns="http://dev.mysql.com/gc/layout" xmlns:svg="http://www.w3.org/2000/svg">

 <layout-definition id="MyxTableMysql?">

 <svg:svg width="3.0" height="3.0">

 <svg:line x1="0" y1="0" x2="3" y2="0" />

 <svg:line x1="3" y1="-3" x2="3" y2="3" />

 <svg:line x1="3" y1="-2" x2="6" y2="-4" />

 <svg:line x1="3" y1="2" x2="6" y2="4" />

 <svg:polyline points="5,4 6,4 5.6154,3.0769" />

 </svg:svg>

 </layout-definition>

 </gc-layout>

Only the id and svg elements are required in the layout file. The rest is optional. Note: XML inheritance and substitution groups are not supported currently. Per layout definition only one svg tag is used. Any other is silently ignored. However you can have zero, one or more primitives in that svg element to compose a certain figure.

The id attribute of the layout definition gives the name of the GRT type that is to be visualized by the instructions given in the definition. The id is a unique identifier and must not be used more than once. The svg element describes the shape. The width and height attributes are optional and are used, if given, to set the size of the entire figure. Without explicit dimensions the figure is as large as necessary to accommodate all of its content. For more information on SVG, see the W3C pages about the format at http://www.w3.org/TR/SVG11/.

The Scalable Vector Graphics format is used to describe the figure. That is the reason why the separate namespace is used for that part of the file. Each of the SVG drawing elements understands certain style attributes. The recognized attributes are:

· stroke-width - The width of the line, relative to the user specified width.

· stroke - The color of the border.
· stroke-opacity – A value in the range [0..1] describing the opacity of the border.
· fill - The fill colour.
· fill-opacity – A value in the range [0..1] describing the opacity of the interior.

So to draw a rectangle with a hairline stroke, the following would do the trick:

 <svg:rect stroke ="rgb(100, 255, 255)" stroke-opacity=”0.4” fill=”indianred” x="0" y="0" width="1" height="1"/>

Following elements are recognized:

 <svg:line x1="..." y1="..." x2="..." y2="..."/>

This element is a line.

 <svg:polyline points="...."/>

This is a polyline. That is, a number of connected line segments. The points attribute holds the coordinates of the end points for the line segments. The coordinates are separated by white space or commas.
 <svg:polygon points="...."/>

This is a polygon, which means a polyline but with automatically closed figure (end and start point are implicitely connected) that can have a fill color. The points argument has the same format as the polyline.

 <svg:rect x="..." y="..." width="..." height="..."/>

This is a rectangle with position (x, y) and dimension (width, height).

 <svg:circle cx="..." cy="..." r="..."/>

This is a circle with centre (cx, cy) and radius r. For ellipses use a simple scale transformation on the particular circle figure. The svg:ellipses element is not supported as separate entity.

 <svg:text x="..." y="..." font-family=".." ...>A text</text>

This is a text element at positin (x, y). Only a subset of the entire SVG text definition is supported (see http://www.w3.org/TR/SVG11/text.html for a detailed description). In particular you cannot use subelements (e.g. tspan) nor is it possible to use any of attributes for layout (e.g. bidi), glyph orientation (e.g. glyph-orientation-vertical), text rendering order or alignment properties. Supported font attributes are font-family, font-style, font-weight and font-size. A part of the text decoration values can be used too (attribute "text-decoration"). These are none, underline and line-through. At the moment no other properties can be used for text output.
A non-standard element, which is allowed in the layout XML file is <texture />. This element allows defining a texture and associating it with a name. Using this name the texture can be applied to any figure. The texture element can appear at any place as direct child element of <gc-layout />. However a texture must be defined before it can be used in a figure element. The following table lists all recognized attributes.
	Attribute
	Description

	id
	The unique identification of this texture.

	location
	The path and file name of the image file to use for this texture.

	wrap-mode-horizontal
	Describes whether a texture should be repeated if texture coordinates reach beyond the [0..1] range. Valid values are:
· clamp: texture is clamped with interpolation of the texture border

· clamp-to-border: like clamp, but the border is considered
· clamp-to-edge: like clamp, but no interpolation at the border of the figure is done

· repeat: texture is repeated (tiled)

Note: clamp-to-border and clamp-to-edge are only available with OpenGL 1.2. They do not harm on older version though.

	wrap-mode-vertical
	Same as the horizontal variant.

	min-filter
	Describes the minification filter used when the actual display requires the texture to be scaled down. Allowed values are:
· nearest

· linear

· nearest-mipmap-nearest
· linear-mipmap-nearest
· nearest-mipmap-linear

· linear-mipmap-linear

See OpenGL handbook for a description of these filter modes.

	mag-filter
	Describes the magnification filter used when the actual display requires the texture to be scaled up. Allowed values are:
· nearest

· linear.

See OpenGL handbook for a description of these filter modes.

	dimensions
	Can be 1 or 2, for one or two-dimensional texture images.

	mode
	The mode how the texture image is applied. Allowed values are:

· decal

· modulate

· blend

· replace

See OpenGL handbook for a description of these modes.

Platform dependant parts

For certain activities a platform dependant part is necessary, which must be separately implemented on each supported platform. This part includes:

· Rendering context management (creation, destruction, associating with an output device like a window, widget, printer etc.)

· Trigger to actually draw the scene.

· Input handling for keyboard and mouse. This includes retrieving hit test information from GC and initiating feedback to the user.

· Start up and shut down of the OpenGL subsystem if necessary.

· Creation of a visual control to be used in the particular target application that is native to the used platform and that communicates with the GC library.

The OpenGL Red Book contains a list of functions for each supported platforms that might be used to set up a rendering context with the local window manager system. Appendix C contains descriptions for the X Window System, Apple Macintosh, IBM OS/2 Warp and Windows.

Generic Canvas and Generic Runtime

Since GC should stay independent there is no direct access from it to the GRT. However an intermediate layer is established that maps GRT value types to GC figures. This layer also manages the figure creation for a particular GRT type by loading the layout data for that type and any necessary texture. It also applies stored properties (e.g. from previous design sessions) to the figures and stores them later when something changed in the scene.
