PostgreSQL 7.4.2 Documentation

The PostgreSQL Global Development Group

PostgreSQL 7.4.2 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2003 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L (=] = (o TSR i
1. What iS POSIOrESQL 2. ..ceeieeeeeecieseseseeeeee st se ettt e e srestestesee e enennensenes i
2. A Brief History Of POSIGreSQL. ..ottt st ii

2.1. The Berkeley POSTGRES PrOjJECL.......ccovirieirieireenietesese e ii
2.2, POSIGIESO5....c.ee ittt e e nren ii
2.3, POSIGIESQL. ...ttt e iii
B T @0 1= o1 1o o 1= TSR iii
o N1 a1l T (o] 4 aT= LT o SR iv
5. Bug RepOrting GUIEIINES.........coiiiiiriierierieeree ettt iv
5.1, 1deNtifying BUGS......c.civeuirieiirieiirieieieieesiee ettt iv
5.2, WRALE L0 FEPOLL. ...ttt v
5.3. WhHEre t0 repOIt DUGS......cceiiiiiiiiiinieerieiereet ettt sneea vii
TR 1110] = 1 USSR 1
1. GEttiNG SEAMEM. ..ot b et et b e s bt e b e e e e ebeebeseeseen 1
I O [151 7= = LT o OO 1
1.2. Architectural FUNdamentalS..........cccociiiiiiieiee e s 1
1.3. Creating a Database.........ccocceiiieeie e e e 2
1.4. ACCeSSING @ DAtabase..........cccevvieeieiicese e 3
P o TSI O L I - T To T - Vo T SRS 5
2.1, INEFOAUCTION.....etiieee ettt ettt ettt b et sb bt ne et ebesbeseesren 5
A ©10] g To1=T o] £ TSRS 5
2.3. Creating @ NeW Table.......c.ccv i ens 5
2.4, Populating a Table With ROWS.........ccccoviiieieeeece e 6
2.5. QUENYING @ TADIE.....c.eoecece et re s re e nnens 7
2.6.30INS BEIWEEN TADIESo 8
2.7. Aggregate FUNCHONS. ..ot r e e 10
B2 < T U o o - =1 12
2.9, DEIEBLIONS ...ttt ettt et b e ere e 12
3. AQVANCEA FEAIUIBS......ccuiie e seeeeeeeere s te e e e et se e saesaeae e e e esesaeseeseenseneenensesenns 13
B 700 I T 1 0T [T 1o 1o P 13
G T Y 1= S 13
3.3, FOreigN KEYS.....oeeeeee ettt s bbb 13
B I - g 7= od 1T T S 14
BT] =1 = g = PSP 15
B 7L T O o T (o] 113 o T S 17

[I. ThE SQL LANQUAGE.c.ectieitieetiirieeriees ettt s bbb 18

4. SQL SYNTAX.....cctiitiieeeietise sttt et r e r e e nne 20

4.0, LEXICAl STIUCTURouiitiie ettt ettt st st se e nesae e 20
4.1.1. Identifiers and Ky WOIAS.........ccoureiririeninese et 20
4.01.2. CONSEANTS.....coitiiieiie ettt b e b ae e b s ae e e sae e e e besaeenneereenes 21
4.1.2.1. String CONSLANLS......cciiiiiiirierie et 21
4.1.2.2. Bit-String CONSLANLS........cccoiirieieeinere e 22
4.1.2.3. NUMENC CONSLANLS......coeitiriiieeeeniere e 22
4.1.2.4. Constants of Other TYPaS......ccocvcevereeiereeee e 23
R T @ 011 = | (0] = YU SRR 23
4.1.4. Special CharaCterS......ccccvieiieeeiise s 24
4.1.5. COMMENTS. ..ottt sn s se e e e renreennenreenes 24
4.1.6. Lexical PreCeAENCE. ..ot 25

4.2, ValUB EXPIESSIONS....c.civiuirieeirieterieteseetee sttt ss st s s bbb e sb e seens 26
4.2.1. ColUMN REFEIENCES.....eoeeeeeeeese st 27
4.2.2. POSItional ParameterS.........ccoovviiirieeieeeee e 27
4.2.3. SUDSCHIPES ...ttt ettt 27
4.2.4. Field SeIECHON.. ...t 28
4.2.5. Operator INVOCALIONSc.ooruirerrierieerieereee et 28
4.2.6. FUNCLION CallS....c..iiiiiiieeeeeee et 28
4.2.7. Aggregate EXPreSSIQNS. ... 29
4.2.8. TYPE CASHS...eiti ettt ettt b e b st se e s ae et saeenn e re s 30
4.2.9. Scalar SUDQUETES......c.oieeerere et 30
4.2.20. Array CONSIIUCTOIS......coueiueeiieieeierte ettt see e e s e b e enne e e 30
4.2.11. Expression Evaluation RULES...........cccociiiininiicneeeee e 32

5. Data DEfINITION.....c..eiuiitiieeeeeeee ettt s b e b e st e e ae s sn 33

5.1, TADIE BASICS....ceiiieeeeeeiee et e 33

5.2, SYSLEM COlUMNS.... .ottt ettt sre e e tesre e renreenes 34

5.3. DEfaUIt VAIUES.......c.eoeeeeeiiie et e 35

5.4, CONSIIAINTS. ..ottt sb bt ne b b e 36
5.4.1. CheCK CONSIIAINLS......cccctiirieirieeriee sttt st st se b 36
5.4.2. NOt-NUIl CONSEIAINTS ..o s sre e 37
5.4.3. UNIQUE CONSIIAINES......cceiieeeeetereseseeeeesese st esee e e sse e seeseesessessessesnens 38
5.4.4. PrIMArY KEYS......covieiiitisieieieeestestesteseessesesesseseessesaessesessesseseesaessssessessessens 39
5.4.5. FOIrEIgN KEYS.....ooeiiirstisietere et st seee e st sne st saesee e eneenesnesnens 40

5.5, INNEIIEANCE......eeeec bbb st st sbe e 42

5.6. MOdifyiNg TADIES......oiiiiiciereee ettt s 44
5.6.1. AddiNG @ COIUMN......ciiiiiiiiiiereere e 44
5.6.2. ReMOVING @ COIUMUIN.......ccoiiiriiirieeneee e 45
5.6.3. AddiNg @ CONSIIAINL.ccoiueirieerieerete st 45
5.6.4. Removing @ CONSLIAINL.......cccoririeirieereeiereeieee e 45
5.6.5. Changing the Defaull..........cccoirinceec e 45
5.6.6. Renaming @ COIUMMN.........ccociiiiriiree et 46
5.6.7. Renaming @ Table........cooiiiriiiiecee e 46

D7 PrIVIIEOES. ..ottt b e b 46

5.8, SCREMAS ...t bbb e a7
5.8.1. Creating @& SCEMA..........coeoiiiirieireee e a7
5.8.2. The PUbIIiC SChema.........coieie e 48
5.8.3. The Schema Search Path...........ccocooiiiiiiine e 48
5.8.4. Schemas and Privileges..........ccoeieiireinini e 49
5.8.5. The System Catalog SChema..........ccceoriiiiiinireeeeee e 50
5.8.6. USAQE PALEINS......octiiiiiieeieie et s 50
5.8.7. POrability......c et e 51

5.9. Other Database ODJECLS.......cccveviieceie et st 51

5.10. Dependency TraCKing........ccceveierierienieii e esee et e e sae e st sne s 51

6. Data ManipUIALION..........ccv ittt e e r e nesneennes 53

LT I [E1=T U o T = = W 53

LR O o To = 1] o [o T I T = 54

LSRRG B =1 1= 1 g o [T | = VO S 54

A O LU =T = OO 56

7.1 OVEIVIBW. ...ttt sttt sttt st st st s et etk e et e st sae b st et e seebeseebenesbeneas 56

7.2. Table EXPrESSIONS.....ccciiiieiesieece ettt ettt sttt eeneere e s 56
7.2.1. TREFROMCIAUSE. ...ttt sttt st sttt 57

7.2.1.1. J0IN€d TAbIES......cceieiireeireeree e 57
7.2.1.2. Table and Column AlIASES......cceivvivrererecerere e s 60

7.2.1.3. SUDQUETIES. ...t 61

7.2.1.4. Table FUNCHONS. ..o 61

7.2.2. TRAWHERECZIAUSE.oveeeieeeeetesie sttt enen 62
7.2.3. TheGROUP BENAHAVINGCIAUSES......coerireiieiieieeeeeiee e 63

7.3 SEIECTE LISES...c.eiieiiiieeeeetes ettt st st benee e 65
7.3.1. SeleCt-LiSt HEMS.....cci it s 65
7.3.2. COlUMN LADELS.....cc.iiiiiee e e 66

80 TR T T 1S I 1N USSR 66

7.4. ComMDINING QUEIIES. ..ottt s b e e 67
7.5, SOMING ROWS ..ottt et bbb e e 67
ST L =V Lo [T 8] 68
T D= L e Y/ 01T TSP U T PR URPPPR 70
o T O 10T =T ol 1] 1= 71
 J O I [01 =T 0 =T Y o 1 SRR 72
8.1.2. Arbitrary Precision NUMDELS.........ccoceviieeie e 72
8.1.3. Floating-POINt TYPES....ccvceeee ettt 73
8.1.4. Serial TYPES .t ieeeceeerte ettt et enees 74

8.2. MONELAIY TYPES.... i ei ettt sttt st sttt et sbe s re b e s aaesreebee e 75
TR T O =T = (o (T g)Y/ 01 75
8.4, BiNAry Data TYPES...ceccvericieresieieeeserestestes e sae e e e reste e saee e e s e sreste e e e e enessenseses 77
8.5. DAtE/TIME TYPES..cueeueeeeteriesiestereeeetesesre e e sae e e sreste s e sseeeseesessesresteteseeneenensenseses 78
8.5.1. DAte/TIME INPUL......oiiiriieeeee e snen 79
8.5.1. 1. DALES.....cececieriereet et e e s 80

o R0 2 I 1= 80

8.5.1.3. TIME STAMPS.....iiiuiiitieriierierere e 81

8.5. 1.4, INtEIVAIS.....cciii ettt ene e e 82

8.5.1.5. Special ValUES.......cccoiiiiie s 82

8.5.2. DALe/TIME OULPUL......eeitierieieriee ettt 83
8.5.3. TIME ZONEBS ..ottt sttt nesnesnens 83
8.5.4. INTEINAIS.....ciieeieeeeeee ettt nne 84

8.6. BOOIEAN TYPE....euiieiirietereete ettt sttt b ettt bbb e eb e ene e 85
8.7. GEOMELIIC TYPES.. ettt ettt ettt ettt b e sb et se et b e e b e b e ene e 85
S A I = o T | £ PSRRN 86
8.7.2. LINE SEUMENLS.....coeiiitiirtiirtetrieie ettt sttt be s eb e b eb e 86

S T ARG T =10) (L USRS PR 86
B.7.4. PANS......ciieciice ettt et 87
8.7.5. POIYGONS....ceieieie et et e 87
B.7.6. ClICIES ..ttt bbbt e e e 87

8.8. NetWOrk AAAreSS TYPES....ciui ettt sttt bbb e e 88
BL8.LUINBL et ——————————— 88
BLB.2.CHAN i e naan s 88
8.8.3.INBL VS.CIAr coveeiiiiiieesee st 89
8.8.4.MACAUAN ...viiiiiiie it e naae s 89

8.9, Bil SIHNG TYPES e ciiiieiete ettt sttt et et e sae et e sre s e e tesraensenneenes 90
S IO 4 = | T PSSR RURRRI 90
8.10.1. Declaration Of Array TYPES......ccvevereeieeieresresesiereese e e siesaesaeasessesnens 90
8.10.2. Array Value INPUL.......ccoeeeeeeese st s snens 91
8.10.3. ACCESSING AITAYS....ccueiteieeeeeresteseseeseeesessessessesseseesessessessessessesessessessens 93
8.10.4. MOIfYING AITAYS.....cciieieeeeetesesteseeseeesese s e e e e ese e seesaesaesassessesnens 94
8.10.5. Searching iN ArTayS.....ccccceeeeeerieseseereeesese e e seeseee e seeseeseeseesesnesnens 96
8.10.6. Array Input and OULPUL SYNTAX.......ccererrererirerereereses e seens 97
8.11. Object [dentifier TYPEScccir ettt s 98

8.12. PSEUO-TYPES ..c ettt ettt sttt sttt sb et a b e b et seebenesbeneas 99

9. FUNCLIONS @Nd OPEIALOLS. .. .cuteeuiieiiiriiesieesieereee ettt 101
9.1. LOQICAl OPEIALOLS.....cecvierteirteertee sttt sttt ettt 101
9.2. COMPAriSON OPEIALAIS......ceiveirieierieierieie ettt sttt sttt snes 101
9.3. Mathematical FUNctions and OPEratorS........ccoeevereririeenieeneesese e 103
9.4. String FUNCions and OPEeratars...........ccoeerrerieereseiesiee e 105
9.5. Binary String Functions and OPEeratorsS.........cccccoeverereerernieniene e 113
9.6. Pattern MatChiNg......ccccceereie e 114

9.6, L.LIKE ..ottt ettt st b ettt b et b et nn e 115
9.6.2.SIMILAR TO and SQL99 Regular EXpressions.........cccuoevevereereeienenn 115
9.6.3. POSIX Regular EXPresSSiONS.o veeerereriesieneseeesesie s 116
9.6.3.1. Regular Expression Detalls.........c.ccooevereirinieneneneeeeenee, 117

9.6.3.2. Bracket EXPreSSIONS.......cccvcceeieeeerieseesiesieeae e seesne e eseeseesneens 120

9.6.3.3. Regular EXpression ESCapes.......ccccoceveveeiesieciese e 121

9.6.3.4. Regular Expression MetasyntaX........ccoccoeeeeereeieeseseesessnninens 123

9.6.3.5. Regular Expression Matching Rules..........ccccoveveviviiveve s, 124

9.6.3.6. Limits and Compatibility..........ccceoererieeie i 125

9.6.3.7. Basic Regular EXPressions.........ccccvevevveveeesesesesieseeseeessennns 126

9.7. Data Type Formatting FUNCLIONS.........ccccviieiereeece st 126
9.8. Date/Time Functions and OPEratars.........cccceeeeerieresiereeseeiesiesreseseseeseeessenees 131
9.8.1.EXTRACTAALE_PAIt .ooceeiveeeieeireesteecire et e ste e sreereesre e srreereere e e e sreeree e 134

LIRS 2o =Y (T ((V] oS 137
O0.8.3.AT TIME ZONE....iiiiiieiiieeeeseesteseesesteeneesseeeessesseessesseesaessesseensessnenssssessanns 137
9.8.4. CUIENt DAE/TIME.....iiviieereeeeeesie e seeeeee et ene s e 138

9.9. Geometric FuNctions and OPEratarS.........coccerrerereierieiereenee e 139
9.10. Network Address Type FUNCLIONS.........ccovrerneneneresee e 142
9.11. Sequence-Manipulation FUNCHONS.........cooirririneieree e 144
9.12. ConditioNal EXPrESSIONS......ccoeirieirieierieie sttt 145
.12, 0 .CASE ...ttt et et e ae et e e sreeneens 146
0.12.2.COALESCE ...ttt it ete et stee e te et e te et et e s te et e et e s e et e e be e sra e e e ereenras 147

LS T 52 8 N | SR 147
9.13. Miscellaneous FUNCHONS.ccoiiirieiere et 147
9.14. Array FUNCLIONS and OPEIatOrS......c.coereeuerrierisieresiee et 153
9.15. AgQregate FUNCLOMNS.ccoiiieiriee ettt 154
9.16. SUDQUETY EXPrESSIONS....c.eiieieeeeierieiie et ieie ettt see e sae et see e e eae e 156
0.18. LEXIST S ecutuiieeieieeeres ettt sttt bbbt et s e bbbttt nn e 156
9.18.2.IN ettt bbb bbb bbbt ne e e 156
9.16.3.NOT IN etttk b ettt 157
9.16.4. ANYSOME.......ctiuiiirerieteiteseres ettt et be bt e sttt e sttt snsnena 157
9.1B.5.ALL 1.ttt bbbt 158
9.16.6. ROW-WiSE COMPAIISQN.......cecceerierieeiienteeeesteeee e seeae e seeseesreesaesresnaens 159
9.17. Row and Array COMPATISOLIS.cceeiueriereeiresreeseestesseestesseessesseseesseseesssssessaens 159
.17 1IN ittt R e 159
9.07.2.NOT INueiuiirereeteieeeses ettt ses ettt b e sa et b et e b n e nnsnenas 159
9.17. 3 ANYSOMEAITAY)....cueeirerreeieeieeeeestesteestesseeeesseseessessesssessesseassesseesssssessanns 160

Q. 17.4ALL (BITAY)...ccteieereererrestestesieseeeesestestessessesessessessestessessessssessessessessensssessenns 160
9.17.5. ROW-WIiSE COMPANISQN....ceeieririeriereereeeseseesresteseeseeessesseseeseessesessessenns 160

10. TYPE CONVEISION....cuiitiiteieeeeeteetesesteseeeesesessestes e e seesessestessesaesseneesessessestessessesenensenses 162
L0, 1. OVEIVIEW.....cuieeerereieesere ettt 162
O I @ o= > o] = 163
10.3. FUNCHONS ...ttt 166
10.4. VAlUE SEOTAQE.i ittt e 168

Vi

10.5.UNION, CASE aNAARRAYCONSIIUCES......cccvieiteeerieiteesteeceessreesreessesssessseesseessenans 169

T [0 To Lo TSROSO 171
I I [o To (1 o 1o) o TSROSO 171
11,2, INUEX TYPES . eiieiirietertet ettt bbbt b e b et bt b e s 172
11.3. MURICOIUMN INAEXES.......ocee ettt st 172
11.4. UNIQUE INAEXES ...ttt 173
11.5. INdEXES ON EXPIrESSIONS....c.iitieeeeuirtirieriereeee e st ste e see e ae s seesseeeneeneenens 174
11.6. OPEratOr ClASSES....ceciruiriirierie e reeiertesie ettt st st be e e ae b sbe b ese e eneanens 174
11.7. Partial INAEXES.......ccvevuiiiieee ettt sttt re et st e era s 175
11.8. EXamining INAEX USAQE.......ccereieeeriirieriirieieeeese st s sne s 177

12. CoNCUITENCY CONLIAL ..c.eiiiiiiiiiiteie ettt ene s 179
D2 I 11 o o 18 od 1 T o PSPPSR 179
12.2. Transaction ISOIALION.ooereieiirere e e 179

12.2.1. Read Committed Isolation Level...........ccccovirineiinisnee e, 180
12.2.2. Serializable 1Solation LEVEL...........cooveinininieeee e 181
12.3. EXPlICIt LOCKING ..c.tiitieieiieeieesieseee st ees ettt sae et s renne s 181
12.3.1. Table-LeVel LOCKS........ccoiiiiieinieeeeeeee e 182
12.3.2. ROW-LEVEI LOCKS......cooiiiiirieie e 183
12.3.3. DEAAIOCKSc.ccuieeeieeierie et e 183
12.4. Data Consistency Checks at the Application Level........ccccocvevvvvvicieeccennns 184
12.5. LOCKING @Nd INAEXES.......ccvivirierieeeieetisiesesteieeee e ste s e eseese s e sressenseneennenens 185

13, PerfOrmManCe TIPS ...coiireriereeeeestesieseeseeeesesesseseesesaeseesessestessessesssssesessessessessessensesessenses 187
13,1, USINGEXPLAIN ...oviteeieeieeectestesteseeseesestestesaessasseseesessessessessesessessessesssssensensensensasens 187
13.2. Statistics Used by the PIaNNEr..........cocccveiineineeeeese e 190
13.3. Controlling the Planner with EXpliciDIN Clauses........cccoovrverrenneneneennes 191
13.4. Populating & Database..........ccccviririereieeiees e 193

13.4.1. Disable AUTOCOMIMUL........cceiiieiiieieee ettt e 193
13.4.2. USECOPY FROM....ociitiiitiiiteisiesesteistesesesesseessessssssessssensssessssessssensssens 193
13.4.3. REMOVE INUEXES....cei ittt et et 194
13.4.4, INCrEASEOM_MEM ...oiiiuieierieeeeeie st e e st st ste sttt bt see e seesbesneesbesaeenes 194
13.4.5. RUMNALYZEAFEIWArdS.........coeeeeiiiieeee et 194
[, Server ADMINISIIALIONccciciiiiice et re e st e b e ee st e eaeeresneeneas 195

14. Installation INSIFUCTIONS........cciiiiiece et see e ne s 197
S o T A /=T 67T o S 197
14.2. REQUIFEIMENIS.eieieieieieetestesie ettt se e st beseese e e s aesbesee b ense e eneanens 197
14.3. GEettiNg THE SOUICE.....coi ittt e sne s 199
14.4. 1f YOU Are UPGrading......ccccoerereereeinierie et s see e sne s 199
14.5. Installation ProCEAULE..........coi ittt sne 200
14.6. Post-Installation SEUP.........ccoeeiiiieieee e 206

14.6.1. Shared LiDraries........cooiiiineereeee e 206
14.6.2. Environment Variables...........cocoiiieneinininceeere e 207
14.7. Supported PlatfOrmiS........ccie e 207

15. Installation 0N WINAOWS..........coiiiiiiieeeene e ene s 212

16. Server Run-time ENVIFONMENL........ccviiiririeirieere et 214
16.1. The PostgreSQL USEr ACCOUML.........ccocirierieieeesesteseseseeeees e seeseesseseseeeenens 214
16.2. Creating a Database CIUSIEN........ccciviiirieee e 214
16.3. Starting the DatabasSe SEIVEL..........ccvviirereeeeee s enen 215

16.3.1. Server Start-up FailUres........ccccoovvevereeeecece e 216
16.3.2. Client Connection ProblemS.........cccoeirrinrinninsenseese e 217
16.4. Run-time ConfiguIatiOn..........cccoeriiiereeees e 218
16.4.1. Connections and AuthentiCation..........ccccovvvvvvrvrereeenie e 219

Vii

16.4.1.1. CONNECLION SENGS....cevveirieirieirieerree e 219

16.4.1.2. Security and AuthentiCation............ccovoeevernenneneneneseeee 220

16.4.2. Resource CONSUMPLION.cciueireireirieierieeessese e 221
16.4.2.1. MEIMOIY...iitiitiieieeeerinte sttt nnen 221

16.4.2.2. Free SPace Map........c.covveeevererininine s 221

16.4.2.3. Kernel ReSOUICe USAQE.......cccureiriririnieneesieese e 222

16.4.3. Writ€ ANEAA LOG....ciui ittt e 222
16.4.3.1. SEINGS ...cvieiieriiirieireisie et 222

16.4.3.2. CheCKPOINIS......cociiuiriiriiieiieieene ettt 223

16.4.4. QUETY PlanninNg........ccoiiirieireie et 224
16.4.4.1. Planner Method ConfiguratiQn............ccoeeeenerenenieneieniennns 224

16.4.4.2. Planner Cost CONSLANIS.........ccoevrveirininereeseeseses e 225

16.4.4.3. Genetic Query OPtimMIZEE.......cccevieveeveseeeere e 225

16.4.4.4. Other Planner OPtioNS......ccccceeceeveveeieseseere e 226

16.4.5. Error Reporting and LOGQiNg.......ccccvvveeeerereerieseeeeseeceeseesesee e 226
16.4.5.1. SYSIOQ.. ittt e 226

16.4.5.2. WheN TO LOG.....cceieiieiiee ettt 227

16.4.5.3. What TO LOG......cuoriirieirieirieesie e 228

16.4.6. RUNIME SEALISHICS. ... 229
16.4.6.1. StatisticsS MONITONNG.......ccceveieeeresesieseseeesese e enens 229

16.4.6.2. Query and Index Statistics Collectar..........ccccvevvvrereereriennns 229

16.4.7. Client Connection Defaults...........cccovvrereinnnnecnnneeeee e 230
16.4.7.1. Statement BENAVIQL..........ccovvereinnreeee s 230

16.4.7.2. Locale and FOrmatting..........cccoevevrenrennennenneneseesee e 231

16.4.7.3. Other DefaultS.......cccovvviireeeece e 232

16.4.8. LOCK MANAgEMENL........ceoiuieriririeiriees e 233
16.4.9. Version and Platform Compatibility.............cccovoirrinnennienneineee 233
16.4.9.1. Previous PostgreSQL VErSIONS........cccooerrerrenereneseneseeniens 233

16.4.9.2. Platform and Client Compatibility...........ccccoovernirnieineiennn. 234

16.4.10. Developer OPLiONS........cccoveieirieiree et 234
16.4.11. SNOIt OPLONS....c.iiiitiiriiirieer e 235
16.5. Managing Kernel RESOUICES........couoiiereerieerieesie e 236
16.5.1. Shared Memory and SemMaphores.cccoevrrirnerrennese e 236
16.5.2. RESOUICE LIMILS....ciuiiiiieiieiecee sttt 240
16.5.3. Linux Memory OVEIrCOMMIL.........cccoieieererereriereenie s 241
16.6. Shutting DOWN the SEIVEL.......coeiiieiie e 242
16.7. Secure TCP/IP Connections With SSL........cccociiiiniienciennee e 242
16.8. Secure TCP/IP Connections with SSH Tunnels..........cccccevniiinineneinienens 243
17. Database Users and PriVIIEgES ..ot 245
17.1. DAtabASE USEIS.....corieiieeiieriiiri sttt 245
17.2. USEI AIIDULES ...t 245
G T 1 (01U o =SSR 246
A e 4171 =T o TS 246
17.5. FUNCHIONS @Nd THQQEES .cceeieieeieceeete e e et sre et nae e ene s 247
18. Managing Databases.........ccccueviieeie et 248
18. 1. OVEIVIEW.. ..ttt b ettt 248
18.2. Creating a Database........ccovvveieeerise e e 248
18.3. Template DatabasEs........ccccvvererieiriresesee e e e ene s 249
18.4. Database ConfiguratiQn............ccceceeireiineseieeiese s esnens 250
18.5. Alternative LOCALIONS.c.covrrerrereiirere e 250
18.6. DesStroying a Database.........cccveveeerireiiriieeee s e e e nnens 251
19. Client AUNENLICALION.ccveeee e ne e enenes 253

viii

19.1. Thepg_hba.conf i€ ... e 253

19.2. Authentication MEthOAS........cooiiereiereee e 258
19.2.1. Trust authentiCatiQn...........cccocveereiere e 258

19.2.2. Password authentiCation............cooevereerinienesenee e 258

19.2.3. Kerberos authenticatian............c.coevereenenieneseree e 258

19.2.4. Ident-based authenticatiQn............ccceveeririereneneee e, 259

19.2.4.1. Ident Authentication over TCPPR.......ccccooiiiiiiiiieeens 259

19.2.4.2. Ident Authentication over Local Sockets..........cccooeieercennnns 260

19.2.4.3. 1dENE MANS...c.eiiieieeirierie ettt 260

19.2.5. PAM AUtNENTICALION.......iieieeee st 261

19.3. Authentication probIEMS...........ooiiiiii e 261

PO I o Tox 1174 11 [0 ST PR PSSR 263
D24 T R o o= 1 L= TS U o] o o 1o PRSI 263
20.1. 1. OVEIVIEW.....eeetieeteieteesteesiee e e seetesesteses e e sbe e sbesestesesessesessesessenessesessens 263

20.1.2. BENEFIES it e 264

20.1.3. ProBIEMS....ceiiet et e 264

20.2. Character Set SUPPOLL.....ccvceeeere e eeee e e e e ste s ete e e e sae e eseesreeneens 265
20.2.1. Supported Character SEtS........ccovvvveieeiene e 265

20.2.2. Setting the Character Sef.........ccoovvevccrinie e 266

20.2.3. Automatic Character Set Conversion Between Server and Client 267

20.2.4. FUrther REAAING........cuoierereeeeiseseseeeeesese sttt s 269

21. Routine Database Maintenance TaSKS........ccourereiineineens e 270
21.1. ROULINE VACUUMINGeiiiiteieereeeeereseeseesesseseesessessesesseesesseesessesssssessessensesensenses 270
21.1.1. Recovering diSK SPACE.......ccccevurrerirenereresie et 270

21.1.2. Updating planner StatiStiCS.........covrerrenneienieereesee e 271

21.1.3. Preventing transaction ID wraparound failures...........ccccocevevreenne 272

21.2. ROULINE REINAEXING......citiiiteerieeriee ettt e 273
21.3. Log File MaINtENANCE........cceiireiriee et 273

22. BaCKUP AN RESIOLE. ..ot 275
22. 1. SQL DUMI. .ottt ettt et ene s 275
22.1.1. Restoring the dUM.......ccoeiieiiierinereese e 275

27205 W2 U £ o To oo e (01431 o - | R 276

22.1.3. Large Dat@bases........cccccureirieirinenineresee st 277

22,04, CAVEALSottt e b e e bt a e s e e e nanan 277

22.2. File system level DACKUP..........ccoiiiiiiee e 278
22.3. Migration Between RelEaSES.......coccoi i 278

23. Monitoring Database ACHIVILY.........curerererereses e e e 280
23.1. Standard UNiX TOOIS......ccciiiieeerirese ettt 280
23.2. The StatistiCS COIECLOL. ..ot 280
23.2.1. Statistics Collection Configuration..............ccoerererrineneseseceeenene 281

23.2.2. Viewing Collected StatiStiCS.........cevvreeieeriieere e 281

23.3. VIEWING LOCKS.....cciiiiieiecticiese ettt sttt enne e naesneennens 285

24. MoNitoring DISK USAQE.......cccviceeiiesieeiisie et e et s e e ae e et e e e naesrennaens 286
24.1. Determining DiSK USAQE........ccceveierieseseee e eee st ste s eae e e e seesae e eneens 286
24.2. DISK FUIl FAIUIE.....eiiiiiee et 287

25. Write-Ahead Logging (WAL)......coeceeieieeee sttt ettt s n e 288
25.1. BENETItS Of WAL.....c.oiecierieieiete ettt 288
25.2. FULUIE BENETIIS.....c.i ittt 288
A TS T VLN IR @0 1o U 1 =1 1 o] o S 289
25,4, INEEINAIS ...t bbbt 290

26. REOIESSION TESIS....iciiiierieeeueetisestesteteeee st sre s e teseeseeseesessesresaeseeeseesesseseeseeseeneenessessenns 292
26.1. RUNNING the TESIS... oot 292

I WY V= 1 LU= (o o TR 293

26.2.1. Error message differenCes.. ... 293
26.2.2. Locale differEnNCeS.......cooeeeieiere e 293
26.2.3. Date and time differenCes.........covvereeeeni i 294
26.2.4. Floating-point differences...........cooovinniineineeeeee e 294
26.2.5. Row ordering differenCes........coevevmerrenneieret e 294
26.2.6. The “random” tESL......cceieeeeeeee e 295
26.3. Platform-specific comparison fileS.........cooironnini e 295
V. CHENE INTEITACESeeieeieiei et ettt b e b b e e e nne e 297
A 11o] o 1o I O I o] = Y S TSSO U PSSP 299
27.1. Database Connection Control FUNCLIONS..........cocoviiireieinienenee e 299
27.2. Connection Status FUNCHIQNS.........ccooiiiiiieieeeere e 304
27.3. Command EXecution FUNCHONS...........ccoeiieieenene e 307
27.3.1. MaIN FUNCLONS.....coiiiiiieieeeteeere et e 308
27.3.2. Retrieving Query Result Information...........cccocevoveveneeesvsceere s 312
27.3.3. Retrieving Result Information for Other Commands....................... 316
27.3.4. Escaping Strings for Inclusion in SQL Commands..........cccccceeenene. 316
27.3.5. Escaping Binary Strings for Inclusion in SQL Commands.............. 317
27.4. Asynchronous Command ProCeSSING......cccevveeriereieresieiesiesesesesaeseeessenes 318
27.5. The Fast-Path INterface.........coceoveiriiinninee e 322
27.6. Asynchronous NOtIfiCatiON..........cceovrirenierereeeces e 323
27.7. Functions Associated with tl®PYCommand............ceeeervierenienenereeenenens 324
27.7.1. Functions for SENdim@OPYDALA.........cccceerereieriee e 325
27.7.2. Functions for ReceivimQOPYData........c.ccovererieirieenrenese s 325
27.7.3. Obsolete FUNCHIONS FOOPY.......ccoiiieeene e 326
27.8. CONIOl FUNCHIONS.....c.eetieierie ettt st ene e 328
27.9. NOUICE PrOCESSING....ccvieiteerteirtet ettt 329
27.10. Environment Variables.........cccoiiiiiiinienereeeeese e 330
27.11. The PaSSWOIA File.......ccooi it 331
27.12. Behavior in Threaded Programs..........cccoeereenneneneeneense e 331
27.13. Building libpg Programs..........cccoeereereenneneseresee s 332
27.14. EXample Programs........c.cocoeeireirieeneeseee st 333
2 T 1o Tl @][Tox £ PSS 341
B T I o T3 (] Y SO 341
28.2. Implementation FEAUIES..........ccoo it 341
28.3. ClIeNt INTEITACES. ... eiireeeierie e e 341
28.3.1. Creating a Large ObJeCL........ccooiiiercrere e 341
28.3.2. Importing a Large ODJECL........cccvi et 342
28.3.3. Exporting a Large ODjJecCt........ccccveiicieecr e 342
28.3.4. Opening an Existing Large ObJeCL.......c.cccoveve e 342
28.3.5. Writing Data to a Large ODbjecCL........cccccvviieeve v 342
28.3.6. Reading Data from a Large ObJECL........ccooceveveeiesecee e 343
28.3.7. Seeking on a Large ODjJecCt..........ccccovvveeeve i 343
28.3.8. Obtaining the Seek Position of a Large Object..........cccccoevevveenene. 343
28.3.9. Closing a Large Object DeSCHPLOL.......cccvvvererereeeeese e seeeeesens 343
28.3.10. Removing a Large ObJECL......ccccveveeeerr e 343

28.4. Server-Side FUNCHONS.........coo e 344
28.5. EXAMPIE PrOgra........ccovieierieeeiseseseseseseeessesieseeseesessessessesssssessesasssssessenses 344
2SI oo | (ol IR ol =110V [T qTo I o] - Vo S 349
29. 1. OVEIVIEW.....etiieieeeeseeeetestesieseeseeeesesse s e seesteseseeseesessesaeseenanneesessessessessessensenensenses 349
29.2. Loading pgtcl into an AppliCation...........ccverrennenneinereerese e 349

29.3. pgtcl Command REFEIENCE.......coeiieiree e 350
1o I o0] 0] 0 [T o APPSR 350
PO_JISCONNECLE.....c.eeviiciiietertert e 352
PY_CONNAETAUILS.......oeieiiciiii e 353
PO_EXEC.. ittt e e e 354
PO_TESUIL ...ttt 355
[oT0 JEST=] (= o! SO SSR 357
PO_EXECULR......eeieteteeeeete ettt ettt b e ae e ettt esbe et e bt e aeeneesaeeseesbeennenbesneanns 359
ST T LS 1= o VOSSPSR 361
PG_ON_CONNECLION_IOSS.....iiiiiiiiiieieeee sttt s e 362
o1 T (o T o (== 1 SRR 363
o1 T (o T o) 0 1= 4 PSSRV P USSP 364
o7 R [0 T o [0 1= =S 365
o7 R [0 T (=T o PSS 366
Lo (o TR] (=SS 367
Lo R (o TR Y=< S 368
oo {0 T (= | S 369
o7 TR (o T 1 L1 1SS 370
o7 TR (o T 12] o1 o PSS 371
o7 TR Lo TR =4 o1 i S 372

29.4. EXQMPIE PrOQra.......ccccivieiereeeeesesestesesieseeessesteseeseesessassessessessessessessessnsenses 373

30. ECPG - Embedded SQL IN.C.....cooi ettt sttt sre s 374

L0 5 T I o =T o =7 o) S 374

30.2. Connecting to the Database SEIVET..........occcrerrerneieneeree e 374

30.3. CloSING & CONNECLIQN......c.citiirieirieeriee et 375

30.4. Running SQL COMMANGAS........ccotriirieirinererieresie st 376

30.5. ChooSIiNG 8 CONNECHIOM.......cciiuiirieirieereeie st 377

30.6. Using HOSt Variables...........ooi i 377
30.6. 1. OVEIVIEBW.c...eeeueeeeeieiiesiesie ettt st see e see st te e e e esesteseeseeneeneenennens 377
30.6.2. DECIAre SECHONS.......eiieeeeeetieese et 377
30.6.3.SELECT INTOQNAFETCH INTO...cccciiietieieireeieriesieeie e eaee e e see e ennens 378
BT G g o [o= 1 o) 5= 379

30.7. DYNAMIC SQL....ciiiiiieiirieieetee ettt e 379

30.8. UsiNg SQL DESCIIPIOr ATCAS......cccetrieuireeiererieresienesie st 380

30.9. Error HANAING. ...c.ceeeeeeeiee e e 382
30.9.1. Setting CallDacKS.........coeieririiere e 382
O o | (o= ST 384
30.9.3.SQLSTATEVS SQLCODE.ttiiiieititiieereesies e esseestes e ssse e ssasssesseesees 385

30.10. INCIUAING FlES ...t 387

30.11. Processing Embedded SQL Programs..........cccccveverererienieneseseseeseeesnenees 388

30.12. Library FUNCHIONS........cci ettt sae s nae e ennens 388

30.13. INEINAIS ..ot 389

31, IDBC INTEITACE. ... c.citeeereeeireeiireetere et 392

31.1. Setting UP the JIDBC DIIVEL......ccccv et ste s eae st sae e sae e eneens 392
31.1.1. Getting the DIIVEL.......cccvece et 392
31.1.2. Setting up the Class Path.........cccveveeiviscceeceees e 392
31.1.3. Preparing the Database Server for IDBC........cccccocevnivvievereeceeienens 392

31.2. INItialiZING the DIVEL......ccce ettt ene s 393
31.2.1. IMPOrting JDBC.......cccvieiereeeerieesieseeeeesese st e et s ene s 393
31.2.2. Loading the DIVEL......cccceeeeceese e seeeeeeese st et s 393
31.2.3. Connecting to the Database...........ccceeveeeverenenereceeese e 394
31.2.4. Closing the CONNECHION.........ccoviirrenrer e 394

Xi

31.3. Issuing a Query and Processing the RESUIL..........cccoccoveineiennenneneeeee 394

31.3.1. Getting results based 0N @ CULSOL.........cccoeireerieenine e 395
31.3.2. Using th&Statement or PreparedStatement Interface.................... 396
31.3.3. Using th®ResultSet INterface.........cccoorivneiineiinireeeereee e 396
31.4. Performing UPAteS.......cccoeireirieirieereeiesesieresie et 396
31.5. Calling Stored FUNCLIOMNS.........ccoieirieereeeseierese et 397
31.5.1. Using th&allableStatement INterface......ccoov e 397
31.5.2. ObtainingresultSet from a stored function...........cccocvvrerecnnnne 397
31.6. Creating and Modifying Database Objects..........cccoeveerininnenereneceee, 398
31.7. Storing Binary Data.........ccoco v 398
31.8. PostgreSQL Extensions to the IDBC ARL........cccooi i, 401
31.8.1. Accessing the EXIENSIONS........ccii e 401
31.8.1.1. Classrg.postgresgl.PGConnection ..ccccevevceerieeeeseeereennn, 401
31.8.1.1.1. MethOUS......coiriiriiieeeireee e 402
31.8.1.2. Classrg.postgresgl.Fastpath .occevvvceeve e, 403
31.8.1.2.1. MEthOUS......cooiiiieiieeeeeeeeee e 403
31.8.1.3. Classrg.postgresql.fastpath.FastpathArg ..o, 405
31.8.1.3.1. CONSIIUCIOLS......eiueeriereeie e 405
31.8.2. GEOMELNC DAta TYPES ...vereeeererierierieeeesesteste e see e e sse st se e seeeesesneens 406
T IS T B - o [l @] o] = o3 £ 418
31.8.3.1. Classrg.postgresgl.largeobject.LargeObject ~ 418
31.8.3.1.1. VariabIes........ccoceiiiireee e 419
31.8.3.1.2. MEtNOUS.....cceiiriiirieierieeriee et 419

31.8.3.2. Classrg.postgresql.largeobject.LargeObjectManager

420

31.8.3.2.1. VariabIES.......cccovveieeeee st 420
31.8.3.2.2. MEthOUS......cociii et 421
31.9. Using the Driver in a Multithreaded or a Servlet Environment.................... 421
31.10. Connection Pools and Data SOUICES.......ccoceovrerierereeneeeeere e 422
3 I O R @Y= V1= S 422
31.10.2. Application Server€onnectionPoolDataSource c.ccoceveeeeeenenn 422
31.10.3. ApplicationSDAtaASOUICE ccerereererrererieesiee et 423
31.10.4. Data Sources and JNDI..........cooivireninininere e 425
31.11. FUrther REAAING......ceieueeeiei sttt 426
32. The INformation SChEMA.........cccooiiiiiee e e 427
32.1. THe SCREMAL. ..o e bbb e 427
32.2. DALA TYPES....oeeeeeiierieeiesteeee sttt see ettt bt e s sae st e beshe et e b e sae e bt eaeeeesaenanen 427
32.3.information_schema_catalog_Name ...occeeiiiiiiesien e 427
32.4.applicable_IOlES i 428
32.5.CheCk _CONSIIAINIS oeiecciec et e et ne e e s are e e nr e e enns 428
32.6.column_dOmMAaiN_USAQE ..iceeecerriieerieisieeieesieeseesteessessseessseesbeessaesssessesssesssessnsens 428
32.7.COlUMN_PIIVIIEGES tooieiieeie ettt st et b e s e e e b s 429
32.8.COlUMN_UOL_USAJE .vevirieiieieieiieesiee sttt sttt saa e san e e b s saae b s 430
32.9.COIUMNS .ottt st b e s b e a e a e b b e nra b s 430
32.10.constraint_ColumMN_USA0E ..icicceeeeieeeeiee e sree e stre e eseee e st e e et e e sne e e snre e e enreeenes 434
32.11.constraint_table_USAgE .ccccciiceecie e 435
32.12.data_type_PrivilBOES e e 435
32.13.domain_CONSITAINIS .evicieeecieeciee e s e eree e see e e st e e ene e e st e e e e e e sane e e snreeennreeennes 436
G Y o (o) o =T T U Lo | U1 Uo = YU 436
0 170 W [0 ' - U SRS 437
32.16.€1EMENL_LYPES ereeeeieecee et ree st et e e e e e a e e re e sreenaaeenre s 440
32.17.NADIEA_TOIES oot e e sneeneens 442

Xii

32.18.KEY_COIUMN_USAGE .eouveverueiieeieesiesieeeesiesieetesteseesaesseestesbeente st sneensesneeneesaesneens 443

32.09.DArAMELEIS .iviieeiieriieiesteee ettt e see st ee sttt be et sbe et be bt e st et e aesaeeneesreennens 443
32.20.referential_CoNnStraintS oot e e 446
32.21.r0le_COIUMN_QrantS ueeoeeiieceiee ettt sttt s a e s seesaeennen 447
32.22.10le_TOULINE_QrANtS .eocieiiiieriesieeee ettt e et st sb et esa e sae e saenneen 447
32.23.r0le_table_grantsS i s s ne 448
R Y (o) [VIsY-Yo (I o = La | T SR 449
32.25.10UtiNe_PrVIIEgES coiicecee e 449
A T (o TU 11T SRS 450
Y (ol o 1= 1 1 - L= SRR 454
B Y o | I (T (0 4= RSP RRRR 455
32.29.sgl_implementation_iNfO i 455
32.30.501_1aNQUAGES evicieeiiie it naa e n 456
32.31.S01_PACKAGES woiveeeieiiiie ettt naa e s 457
32.32.S01SIZING teoiiiiie et n 457
32.33.501_SIZING_ProfilesS e 458
32.34.table_CONSIrAINS .eiiiiiee e e et e e e e e snre e e enre e enns 458
32.35.table_privilEges oo e 459
32.36.ADIES e e ettt 459
G Y2 7 8 11T To =Y £ 460
32.38.USAQE_PrIVIIBIES eoocieeieece ettt s eaaeenre s 461
32.39.VIEW_COIUMN_USAGE veeieeeeeeieesieesteeteesteeseesreesteesseesnse e teesaaesnneenteesneesnnesnsens 462
32.40.ViEW_tabI@_USAJE .iicieeieeeeeeieesieeeeeete e s e e seeste e ste e s aeesaae e te e saaesane e be e sneenneeenre s 463
TSR 463
V. SEIVEr PrOgramMIMiNg ...c.coceoiiiriesieriereeestesesteseeseeessessessessessesseseesessessessessessesessessessessessensessesesses 465
33 EXIENAING SQL....eiiiiiiieieeieseeie ettt ettt 467
33.1. How EXtensibility WOTKS.......cccoceoireiinerneeeees e 467
33.2. The PostgreSQL TYPE SYSEIMN.....c.coviriirrireeieese st 467
33.2.1. BASE TYPES. ..ottt e 467
33.2.2. COMPOSILE TYPES. ettt 467

IS T2 T B T 4= 11 1= TSP 468
33.2.4. PSEUAO-TYPES. ..ottt sttt sttt 468
33.2.5. PolyMOrphiC TYPES....ooieeeeeeeee et 468
33.3. User-Defined FUNCHIONS........cocoiiiiiiieie et 468
33.4. Query Language (SQL) FUNCLANS.........cooiirirerire e 469
33.4.1. SQL FUuNCtions 0N BASE TYPES.....cccreererereinieiereeeee st 469
33.4.2. SQL Functions on COMPOSIte TYPES....ccccerererererienenienie e 471
33.4.3. SQL Functions as Table SOUICES.........cccccevevericiese e 473
33.4.4. SQL Functions Returning SetS........ccccccevvieereveeieseeeese e e 473
33.4.5. Polymorphic SQL FUNCLONS........ccccviieierr e 474
33.5. Procedural Language FUNCLONS.......cccveieiineeie et seeie e see e 475
33.6. INterNal FUNCLIONS......ccoiiii ettt e 476
33.7. C-Language FUNCLOMS.........ccccceeieieeieseeeee s sses st seeste s eee st eseesae e esaesneeneens 476
33.7.1. Dynamic LOAdiNg........cccciereeeeririiieieiecisese et eae e s 476
33.7.2. Base Types in C-Language FUNCLIONS.........c.cccceveeeeeeneneveseeseeennens 477
33.7.3. Calling Conventions Version 0 for C-Language Functions............. 480
33.7.4. Calling Conventions Version 1 for C-Language Functions............. 482

I3 I A8 ST YL 111 o T @ Lo = 484
33.7.6. Compiling and Linking Dynamically-Loaded Functions.................. 485
33.7.7. Composite-Type Arguments in C-Language Functions.................. 487

33.7.8. Returning Rows (Composite Types) from C-Language Functians489

Xiii

33.7.9. Returning Sets from C-Language Functions...........cccocevevveneneennn 490

33.7.10. Polymorphic Arguments and Return TYPesS.......ccoevvvrvenenenenecennee 495

33.8. FUNCLION OVEIOAAING.ceiteirieirieierieie et 496
33.9. User-Defined AQQregates........cccu et 496
33.10. USer-Defined TYPES......cco ittt 498
33.11. User-Defined OPeratorS........cccueireereerenienesene ettt 501
33.12. Operator Optimization INfOrmMation.............ccceoerieiiieneerine e 502
33.12. 1.COMMUTATOR....ccttetee st cteeiteestesstesteeste s sbeeseesbesssaesse e bessraesnresseesens 502

IS I 2 N (€7 @] = S 503

A B 02 I = L I [S 504

I TN 02 N | SRS 504

I S NS o TS 505
33.12.6 MERGE$SORT1 SORT2 LTCMR GTCMP.....oceeieceeieeeceee e 506
33.13. Interfacing EXteNsSioNs TO INAEXES.......ccuccieieve e 507
33.13.1. Index Methods and Operator ClasSeS.......ccccvveeverieeceerrseeresenaens 507
33.13.2. Index Method Strategies.........cvveiereeieere e e 507
33.13.3. Index Method Support ROULINES.........ccccvieevevire e 509
33.13.4. AN EXAMPIE...eieiie et s 510
33.13.5. System Dependencies on Operator ClassSes......ccocoevvvvereereeernenns 512
33.13.6. Special Features of Operator Classes........ccccevvevveverieveveseeseeienenns 512

34. The RUIE SYSIEML. ...ttt sttt ne bt sae e e e enenneens 514
T I oI @ T 1= Y (=T S 514
34.2. Views and the RUIE SYStEM.........ccccvvvviriereseeecese e 516
34.2.1. HOWSELECTRUIES WOIK.....ceeviriiiiiieeieiecsieseesiese e 516
34.2.2. View Rules in NOISELECTStatemeNts......cocvvvrereereeereseseneeeeenens 521
34.2.3. The Power of Views in POStgreSQL........cccooveeirrinniinniennenesieeee 522
34.2.4. UPAating @ VIEW....c..oiiiiiieeeriee ettt 522
34.3. Rules ONSERT, UPDATE @NADELETE......c.cccotrrureeeeeerereeeeneeseseseeeeseneseseseenens 522
34.3.1. How Update RUIES WOIK..........ccocoeriririiieeeeeee e 523
34.3.1.1. AFirst Rule Step DY STEP.......ccveverrerrerseereesee e 524

34.3.2. Cooperation With VIBWS..........ccoeirrerireneneeniee e 527
34.4. RUleS and PrIVIIEGES........cccoiiiieirieeiee e 532
34.5. Rules and Command StatUS........ccccierirererieienere e sae e 533
34.6. RUIES VEISUS THOOERIS ..cveirteerieitrieie sttt sttt 534
BT I o To =] £ TSSO 537
35.1. Overview of Trigger BENAVIQL..........cocoiiiiiiirere e 537
35.2. Visibility of Data Changes.........cccceeririreieieeeese e 538
35.3. Writing Trigger FUNCHONS N C.....cocoiiiiiiieeeeee e 538
35.4. A Complete EXAMPIE......oii e 540
36. Procedural LANQUAGES. ..ottt sttt et b e se e 544
36.1. Installing Procedural LaNQUAGES........c.ceevevuieeeieeiesieeseseeieseeeesaeseeseesneennens 544
37. PL/pgSQL - SQL Procedural LanQUagE.........ccccevueeierieeeerieieesieseeeesieseesee e eseeseeennens 546
7.1, OVEIVIBWL. ettt sttt bbbt b e b b e e e ettt sb e b et e e e e e eneneas 546
37.1.1. Advantages of Using PL/PGSQL......ccccoevviieie e 547
37.1.2. Supported Argument and Result Data TYPeS......cccocveeevvieevesennens 547
37.2. Tips for Developing in PL/IPGSQL.......ccociiieieeeese e 547
37.2.1. Handling of Quotation MarkS..........cccccceevvereneneneesesese e 548
37.3. Structure of PL/PGSQL.....cv ettt 549
7.4, DECIATAtIONS.....c.e ittt sttt et 550
37.4.1. Aliases for Function Parameters........c.oovevreeneienniense s 551

A S O] o)/ T o N Y/ 0 1= = 552
37.4.3. ROW TYPES ..ottt sttt sttt r e e sn e 552

Xiv

37.4.4. RECON TYPES .. itiirieiriet ettt sttt 553

BT 4.5 RENAME......ciiiie ittt ste e te et e te et s e e st e et e et e e sateete e be e sraeenreenreesres 553
7.5, EXPrESSIONS. .. .cutiiieriete ettt sttt bbbt 553
37.6. BASIC StAtEMENLS.......oieiiiiie et 555
37.6.1. ASSIGNIMENL. ..ottt 555
37.6.2.SELECT INTOuiiiiiiiiieieesieecteeieestessteeteestesssteeseestessaaesseesesssaesnsesnseesens 555
37.6.3. Executing an Expression or Query With No Result..............ccc...... 556
37.6.4. Executing Dynamic Commands.........ccccvererenenernenienese e 557
37.6.5. Obtaining the Result StatlLS........ccocooeriniieee e 558
37.7. CONLIOl STIUCLUIES......ccuiitirii ettt et s eae s 559
37.7.1. Returning From a FUNCLON..........ccoiiiiee e 559
7. 7. LARETURNM . c.ectiittirieteteese sttt st 559
37.7.1.2RETURN NEXT . iiiiiteriiirriesieeseesnnesiesssessnssssesssessssssssesssnsssesssens 559
37.7.2. CoNAItIONAIS.......ceiireiirciree e 560
3B7.7.2.1IF-THEN .ottt 560
37.7.2.2IF-THEN-ELSE ...iiiitirieriieriiesie st see st ssas st n 560
37.7.2.3IF-THEN-ELSE IF oottt 561
37.7.2.4IF-THEN-ELSIF-ELSE ...iiiiierieriiesieente ettt 561

G A ARG TS 141 0] (=31 o o] o 1= 562

7. 7.3 LLOO0P....c.ce sttt 562
7. 7.3 2EXIT ottt 562
7.7 3. 3WHILE ..ttt 563
37.7.3.4FOR(INtEQEr VAIiANt)......ccccerierereeeeese s sreseeesese e seeseeesnenes 563

37.7.4. Looping Through Query ReSUILS........ccccoveiireiireieneeneee e 564
- TR 1 U = o] SRR 565

37.8.1. Declaring Cursor Variables..........ccoonieineineeeeseee e 565

37.8.2. OPENING CUISOIS...c..iirieiirieierieiereeie sttt ses e st besesbe e sbens 565

37.8.2.10PEN FOR SELECT ..iiicririrerirerieeneseresesteenesesesassesesesesessenens 565
37.8.2.20PEN FOR EXECUTE....ccocesieiiiesieesee e etee e see e e 566

37.8.2.3. Opening a BouNd CUISQL.........coeovreerenenenieeneeseee e 566

37.8.3. USING CUISOIS......iiiiiiiitieee ittt sttt sttt 566
7.8 3.1 FETCH ittt ettt 566

B7.8.3.2. CLOSE ..ttt 567

37.8.3.3. REtUrNING CUISOIS......ccueirieiirietirieiereere sttt seese e seere e 567

37.9. Errors and MESSAQES.coueiuereeiririeriesiesiesie e eaesie e seeseees e see e besaeneenesaeseas 568
37.10. Trigger PrOCEAUIES........ciui ettt ettt st st ene s 569
37.11. Porting from Oracle PL/SQL.......ccoi i 571
37.11.1. Porting EXamPIES....cccoeiiieerie ettt 571
37.11.2. Other Things to WatCh FOrL........ccooiiiiiiiiee e 576
37112 1 EXECUTE ettt ettt ettt 576

37.11.2.2. Optimizing PL/pgSQL Functians..........ccccceveevvevesveseneenen, 576

G700 I TG T AN o] 1= o < GRS 577

38. PL/Tcl - Tcl Procedural LangUAagE..........cccoveeeieieeiiesieeeesteseesie e e sreesee e sasseesnaens 580
8.1, OVEIVIEW. ...ttt sttt n s 580
38.2. PL/Tcl Functions and ArgUMENLS.......ccveveruereereereseeseseeee e seesaeseeseeseesnaens 580
38.3. Data Values in PLITCL.....coiiieeeenrceeeseres e 581
38.4. Global Data in PLITCL......coieiireeeerere e 581
38.5. Database AcCeSS from PLITCL......cccovrieeiirreeeeerese e 582
38.6. Trigger Procedures in PLITCL.....ccoov e 584
38.7. Modules and thenknown COMMANC.........ccoeiirrmrrereirrree s 585
38.8. TCl Procedure NAMES........ccvirrrrereeereree et 586
39. PL/Perl - Perl Procedural LAnQUAGE.........cccoeerrererinrenese e 587

XV

39.1. PL/Perl Functions and ArQUMEILS.........ccurreririerireiesiee s 587

39.2. Data Values iN PL/PEIL........ooeeeece e 588
39.3. Database Access from PLIPEIL........ccviriineeeeeee e 588
39.4. Trusted and Untrusted PL/PELL.........ccoooieieeeeee e 589
39.5. MiSSING FEATUIES.......cuiiirieietceeeee e e 589
40. PL/Python - Python Procedural Language..........c.coceoeenienineieneeneeesesesesie e 591
40.1. PL/PYthON FUNCHONS. ..ottt e e 591
40.2. Trigger FUNCLIONS.coiiieeeeeeee sttt s e e 591
40.3. DAtADASE ACCESS.....couiiiiriiieieeeeet ettt b e b et 592
41. Server Programming INTEraCe..........cooiiiiii e 594
41.1. INterface FUNCLIONS........cooiieit e e e 594
0] o o0 o1 = o A RPN 594
SPLFINISH.c.cee e 596

] o = (T oSO UR R 597
SPI U PIEPAIE. .ttt ———————— 600

] o = (S o] O R R OURRS 602

0] o I o 01 C=To] g o] 011 o FO PSR URPR S 604

Y o I w0 £=To 1o ST 605

S o I o0 £=To] g (= (o o T 606
SPI_CUISOI_IMOVE ...ttt st b e s r e re e e 607

] o I o0 £=To] o [0 = 608

] o IET= 1YL= o] = 609
41.2. Interface SUPPOIt FUNCHIONS.........covverereeeeeeese st steeee e 610
SPI_NAME ..o 610
SPI_NUMDEL. ..o 611
SPI_gEVAIUE. ... 612
SPI_gethinual........c.coooiiiiee e 613

SP QI PO et 614
SPI_QEttYPEIG....c.ecue e 615
SPI_getrelNaME.oiciieeee e 616
41.3. Memory ManagemeNt.........ccecvririiinrenereeeeesesre et e s 617
SPI_PAIIOC. ..ottt 617
SPI_TEPAIIOC......ceceiieetireteeee e 619

SP P T s 620

SP COPYUPIE et e e 621

] ol I el0] o)V 18] o1 [T0 (=2 oS ST 622
SPI_COPYLUPIEINTOSIOL......couiieiieieeeeeteee e e 623
SPL_MOAIfYTUPIE....eeeee e e 624
SP_fTEEIUPIE. e e 626
SPL_freetuptable.... ... 627

] T (==] = o TSRS 628
41.4. Visibility of Data Changes..........ccccveieieieiie et 629
T e T] o] [TR 629
VI RETEIENCE. ..ottt ettt n e r ettt 632
[, SQL COMMANGS.....ccuiiitiitiiiiite ettt eite et e ste e estesresaesbesbeesbesbesasessesseestesbesssebesseensesreenss 634
ABORT ...ttt 635
ALTER AGGREGATE ...ttt 637
ALTER CONVERSION. ..ottt sesnenenens 638
ALTER DATABASE ...ttt 639
I = 10T 1Y | PP 641
ALTER FUNCTION ...ttt see et eseesae e neesseenaessesseesnsneenees 643

XVi

ALTER GROUP......ooteiceee s s 644

ALTER LANGUAGEociiitiieeeeeet st e 646
ALTER OPERATOR CLASS ...ttt e e 647
ALTER SCHEMA. ..ottt e s 648
ALTER SEQUENCE........co ittt e 649
ALTER TABLE ..ot e e 651
ALTER TRIGGERI......co ot s 656
ALTER USER ...ttt e s 657
ANALYZE ..ottt e e e s 660
BEGIN ...t s 662
CHECKPOINT ...ttt s s e 664
CLOSE ... e s 665
CLUSTERA. ...t et s e 666
COMMENT . e 669
COMMIT e e 671
COPY e 672
CREATE AGGREGATE ... 678
CREATE CAST...o i e s 681
CREATE CONSTRAINT TRIGGER........ccoiiiii 684
CREATE CONVERSION......cciiiiiiiriiiii s 685
CREATE DATABASE.......o oottt 687
CREATE DOMAIN.....ctiiitieete ettt 690
CREATE FUNCTION.....otiiiiierenteie ettt 692
CREATE GROURP......ceiieeeetetee ettt e 696
CREATE INDEX .. .ottt ettt et enenns 698
CREATE LANGUAGE.......ci et 701
CREATE OPERATOR......o ottt e ene s 704
CREATE OPERATOR CLASS..... oottt 707
CREATE RULE ...ttt e e 710
CREATE SCHEMAL. ..ottt e 713
CREATE SEQUENCE ...ttt e 715
CREATE TABLE ...ttt e 718
CREATE TABLE AS......o ettt s e 727
CREATE TRIGGER.......ooiiiiiiii ettt e 729
CREATE TYPE ...ttt et 732
CREATE USER......i it e 737
CREATE VIEW.....iiiti e e 740
DEALLOCATE ...t e e s 742
DECLARE. ... oo s 743
DELETE ...t e e e 746
DROP AGGREGATE ..ottt e s 748
DROP CAST...o e e s 749
DROP CONVERSION......occiiiiiiiiti s s 750
DROP DATABASEo ot s s 751
DROP DOMAIN ..ottt s 752
DROP FUNCTION......coiiiiiiirint i s 753
DROP GROURP........ocii i s 754
DROP INDEX... .ot s s 755
DROP LANGUAGE ... 756
DROP OPERATOR......cotitrteerrcerree e 757
DROP OPERATOR CLASS ..ot 759
DROP RULE......cotiiitiitere ettt e e s 760

XVil

DROP SCHEMA ... oottt e 761

DROP SEQUENCQGE.......c ettt sttt 762
]] I AN = ST 763
DROP TRIGGER...... ettt ettt sttt sttt e naeenne e saaeareeneesnes 764
DROP TYPE.....o ottt sttt sttt s et se st ese s e se s sensesensssanen 765
DROP USER ..ottt sttt ettt st s s s aesensesensssanen 766
DROP VIEW......o ettt sttt sttt et st se st s sesensssensnsenes 767
EIND ottt ettt bttt bR ARt R et R et Rt s e nnnnenen 768
EXECUTE. ..ottt sttt ettt s et b s s e e e senen 769
) AN 1TSS 770
o 1O o TSR R 773
(1 7Y VSO 777
INSERT ..ttt sttt ettt ettt et e b et e s s b e s et e se st e s e ne e s e s s e s s enensenen 781
LISTEN oottt sttt s et st s et e bt e b e e s e e b e e nsenes 783
0 A I TSSO 785
1 11 TSSO 786
IMOVE ...ttt bbbt b bbb bttt b e e e s s 789
INOTIFY ettt ettt s et s et b et e b et e b e e s e e b enesenes 790
PREPARE ...ttt sttt et ettt b ettt 792
REINDEX. ...ttt ettt sttt b et s et se st bt b et b e b e nsenes 794
RESET. ...ttt b et s et b et st b et b et bt 797
REVOKE ...ttt ettt 799
ROLLBACK ...ttt ettt sttt sttt ettt ettt nenes 802
SELEC T e ittt et a et et e et e et 803
] I O I | 1 S 814
S TSRS 816
SET CONSTRAINTSttt see e e e st e s e e s e e nteenseesraeereenneesnneans 819
SET SESSION AUTHORIZATION.tiiiieeiecte et estee e sve et e e e snee e e nneesnne e 820
SET TRANSACTION. ...ttt sttt et e s e s et e s e snneeteenneesnneans 822
L [ST 824
START TRANSACTION.....cccte ettt eeste et s e eae et esaeeae e beesneesnaeenren 826
I L0 1 L A I P 827
UNLISTEN. ..ottt sttt et st se s e s e s s s senssanes 828
UPDATE ...ttt ettt sttt b et et et ese st e s et e s e st ese st esesseseseseneesenensenen 830
VACUUM L.ttt st sttt se e s e et e se et e seebe e et e e sbeseseesesaesesentesens 832
[I. PostgreSQL Client APPlCALIONS........coi i 835
Lo 101 =] o | o H SRR 836
CrEALEAN. ... e bbb e eaeaas 839
CPEALEIANG. ... ettt et bbb e et s a e bt e e eae e 842
CTALEUSEN ...ttt e eeste st ettt et e st e aeese e s bt e aee s beeae e s e ebe e e e saeemeesbesheensenbesneensesreeeesreennens 845
Lo 10T o | o T OSSP 848
Lo 10T o] F= T o o T O RS 851
Lo 10T oW 1= oS 853
LT o oo TR SR SPRRTR 856
7o oo 1 T S 858
o7 T L8 1 1] o TSRS 860
o7 T L8 141 o =1 RSP SR 866
010 T (=153 0] = PSP PRURROPR 869
0| £ RSP SRN 875
011156 NSRS 876
15 o | RSSO 877
1722 (o 811 .o | 1 899

XViii

[1l. PostgreSQL Server APPIICALIONS. ...ttt 902

7170 | PR STRSRN 903
1711 o TF= o o TSRS 906
0 oo [= - o TSRS 907
[oTo I eTe] g1 (0] o F-\ = VS SSRSRR 908
o7 [| SRS 909
10 I C=25T=1 074 0T TSP 913
POSEGIES ...ttt ettt sttt sttt b e st e bt e ae e e e she et e s b e e Re e b e e bt e e e Rt eaeeneesheenrenrenanenes 915
POSTMBISTEL.ttt b e s se e et b e s ae e e e ebe e e e eaesaeesbesaeennenbennnanes 919
VL INEEINAIS ...ttt b e b et e et e ae b b et e e et eneneas 924
42. Overview of POStgreSQL INterNals.........cccecveeeii e 926
42.1. The Path 0f @ QUELY ... e 926
42.2. How Connections are Established............ccccooiiininicinieccee 926
42.3. THe Parser STAQE......ccccciieieieciee st ee e e ettt enaenn e sne e 927
R T N == 1] PP U PSPPI 927
42.3.2. Transformation PrOCESS.........ocvvveiieiree e 928
42.4. The PostgreSQL RUIE SYSEML.......ccivieieeeceeise e 928
42.5. Planner/OPtiMIZEr........ccuivieieeee e sese et ettt s a e ene s e 928
42.5.1. Generating POsSIbIE Plans........cccovveveieeiesinie e seseae e 929
42.6. EXECULOL......ctiieeeeeeeeteste sttt ettt s b e e e s nne s 929
T VA1 (=11 (O = [0 o S 931
e Ft @ Y= V= S 931
G B oo I Voo | 1= T-1 1= U 932
G TG TN oo - 0 o PR 932
G B0 oo - 102 To] o JEU SRR 934
G ST oo - 1211 oo o2 PR 934
G G oo - Lo [USSP TRS 934
G O oo I L1 T L USRS 935
7RG IR oo I o7 1) SRS 938
A3.9.P0_ClASS ettt ettt b et a e et be et e b eae e e saeeneas 939
A3.10.D0_CONSITAINT .eoeieeeeiee ettt ettt ettt b e ae e st se e b e e e e b e sae e e e saeeneas 941
G 20 o o To T o700 1V =Y £ To o OO USSR 943
e I o Yo e = = o Y- TSP 943
e 0 G o Yo o (=Y o =Y o o SRR 944
0 0 7 0 o Yo o [T o T 1T o PR 946
e B o Yo T o o U J PR 946
e 0 I o Yo T g To = PR 947
e I o Yo T T T 1 £ USSP 948
B e o To T - UgTo [N - Vo =TSP 949
43.19.pg_largEODJECE eiiiiii i e 950
43.20.pG_lISLENET it aes 950
o It N o To T = T (L= o = T USSP 951
NG B o To [) o = Tt SRR 951
ARG T2 W oo [l) 0 =1 -1 (o] SRS 952
G B N o To [o (Yo S 953
G B2 ST o To T (=1L 1(= S 955
L S o Yo TR = Lo (o1, 956
A G o Yo =] =Y 11 [957
L 1 o Yo T 1T o =Y G 958
G B oo T 1 o1 T 959
43.30. SYSEM VIEBWS.....ceiuirieiirieie ettt sttt st sttt st e e b neebe e 965

XiX

G e 3 o To T 11 [P RS 966

G IR Y o To T [o o1 U RTR 966
G G 1 oo T (111 ST 968
G R 7 o To TR Y=Y 1113 Vo LSRR 968
G e 1SN o To T - LT OO UROR TR 969
43.36.P0_tADIES .o e e e b e ae e eae e 971
e R A o Yo T U 1Y PR 972
TS o Yo TR/ LTS 972
44. Frontend/Backend ProtOCAL...........ccoiiiieiiininese et s 974
AA. 1. OVEIVIEW ...ttt ettt sbe bt se et ae e b e s bt sb e st e b et et eaeebesbesee st e e eneenenaeene 974
44.1.1. MeSSAQiNG OVEIVIEW.......cceruiruiriiieieereee st eeene e e e sseee e snesaens 974
44.1.2. Extended QUETY OVEIVIEW.........orueieirereeiese et sne 975
44.1.3. Formats and FOrmat COAeS.......cooururirierinine e 975
44,2, MESSAYE FIOW......ceeceeeee et sttt sne s 976
N NS = L4 U o TSSO 976
44.2.2. SIMPIE QUEIY.....ciuiieeecieetieeeteeeeste st et ae et sae e eneeaesneeneas 978
By e T = (=] T =T I @ U= 979
A4.2. 4. FUNCHON CaAll.....oieiiiieiereeeee et 981
44.2.5. COPY OPEIatiONS....ccceiveieeeeetiriesiessesieseeesestestessessesessessssssssessesssssssessens 982
44.2.6. Asynchronous OPEratiQnsS.........ccoeeuereereeesesieseneeseeseseseeseessessesessessens 983
44.2.7. Cancelling Requests iN ProgreSS......ccocuovvivvierereereeiesieseseesieseeseseneens 983
¥ T =T 0 11 F= Vi o] o PSSR 984
44.2.9. SSL SesSioN ENCIYPLON.....ccciviireeeeese e e eese e seeseeaeesne e 985
44.3. MeSSAQE Data TYPES.....ciereeeeerierie sttt sr e s 985
44,4, MESSAJE FOIMALS.......cci it 986
44.5. Error and Notice Message Fields.........cccoevvnnnnenneineeese e 1001
44.6. Summary of Changes since ProtoCol.2.0.........cocovierneineineenrereeeeee 1002
45. PostgreSQL Coding CONVENTIONS......c.oouiuiiriiirieirieerieesie e 1004
A5. 1. FOIMALING. ...t ittt sttt 1004
45.2. Reporting Errors Within the Server..........cnnnenneeeeesseeee 1004
45.3. Error Message Style GUILE........cccoeireirieenee et 1006
45.3.1. What g08S WNEEE........cooiiiriiirice e 1006
45.3.2. FOrMALING. ...c.eiveeeieeeereeteseeieestee ettt 1007
45.3.3. QUOLALION MAIKS.......ciiieeeeieeire e 1007
45.3.4. USE Of QUOLESoiuiiiieeeeeeet ettt 1007
45.3.5. Grammar and pUNCLUALION..........ccereiriere e 1008
45.3.6. Upper Case VS. IOWEI CASE.........cuvireeriere e 1008
45.3.7. AVOId PASSIVE VOICE.....ceeeeuireiriiriisieieee ettt 1008
45.3.8. Present VS Past tENSE........cciiirirriieeree et 1008
45.3.9. Type Of the ODJECL....ceoeieeie e 1009
45.3.10. BraCKetS......cccoiiieiriiriereeeeeet ettt e 1009
45.3.11. Assembling rror MESSAGESccvcveereieeieeriereertesreereesreseeseesreeeenes 1009
45.3.12. REASONS fOF ITQAIS....c..ciiuietirieiiesieie et 1009
45.3.13. FUNCLION NAIMESoitiieeeiieterie ettt 1009
45.3.14. Tricky words t0 avoid..........cccveeereiceere e 1010
45.3.15. Proper SPelliNg.......ccccveeieiie e 1010
45.3.16. LOCAIIZALION......coevieeieeeieesie e e 1011

46. Native Language SUPPQLL.......cccccereriririeriereeesesesiessesaeesesse e eseesesssssessesssssessesenses 1012
46.1. FOr the TranSIator........ccooeiirinnere e e 1012
46.1.1. REQUIFEMENTS.....ccisiiiiereeeeeeeteste st steeeee e ese st e st see e ese s sreseen e neeneens 1012

T O o (o7 =T o (= 1012
46.1.3. Creating and maintaining message catalogs........ccoeeerrvererenennnn. 1013

XX

46.1.4. Editing the PO fil@S.....c.ooeeeee e 1014

46.2. FOIr the PrOgrammMeL.........ccooeiiieninieieniee sttt 1014
00 I 1Y (=Tl = g[SSR 1015

46.2.2. Message-writing gUIdeliNes...........cccoeerrennenneireee e 1016

47. Writing A Procedural Language HandIer...........ccciiineineineeeesesesese e 1017
48. Genetic QUETY OPLIMIZEL........ccoucirieirieirieie et 1019
48.1. Query Handling as a Complex Optimization Prohlem............cccoccooeveinene 1019
48.2. Genetic AlgOrtNMS.....oco e e 1019
48.3. Genetic Query Optimization (GEQO) in PostgreSQL........cccccovenerirenenncns 1020
48.3.1. Future Implementation Tasks for PostgreSQL GEQAQ.................. 1021

48.4. FUrther REAAINGS........eiiieeerierie ettt st s 1021

49. Index Cost EStimation FUNCLONS. ..o 1022
50. GIST INAEXES.....ccviueeeiirietirietese ettt e s s s sn s s 1025
50.1. INTFOAUCTION. ...t 1025
50.2. EXIENSIDIIILY......coeiriieieeiieiiresieieeesese s s 1025
LI T [Y 11T g T=T o 7= Lo 1025
50.4. LIMITALIONS.....ccviiriiireeirieirreeree et 1026
LTI e 11 0] o] =TSSP 1026

o3 I == To L= 1 o 1028
52. BKI Backend INtErfaCe.......ccoviiiirirreeesenseee s 1031
52.1. BKI Fil& FOMMAL.....ccoiviiiiirisiiceeresesee s 1031
52.2. BKI COMMANTUS.....cviririiiirenireieieresesreree s 1031
L T b - 1 4] o = SRS 1032

RV Y o] o T=T o DS SR 1033
A. POStGreSQL Error COUES.......oiuiuiriiiireriereriee ettt st s 1034
B. DAtE/TIME SUPPOKL....ceitiiiteerteerteertet ettt ettt sttt b e 1040
B.1. Date/Time Input INterpretatiQn...........oeeeeereeneereeneesee e 1040

B.2. Date/Time KeY WOIAS........ccociieiireeneiereeieesie st 1041

B.3. HIStOrY Of UNItS.....ccuiiiiiiicee ettt 1046

C. SQL KEY WOIUS... .ttt b ettt s 1047
D. SQL CONfOMIANCE.....ccuiiiiieieeeeetes ettt sttt st et saesbesbeseeneeeenens 1062
D.1. SUPPOITE FEAIUIES......ccvceieeeireete ettt 1062

D.2. UNSUPPOIEd FEALUIES.......coi ettt 1072

E. REICASE NOTES......eiuiiiitiiee ettt sttt b e bbbt sae b b e bene e e enea 1078
E. L REICASE 7.4.2 ...t bbb e 1078
E.1.1. Migration t0 VEIrSiON 7.4.2.......ccciiiiiireieeene e 1078

E.L1.2. ChANQES.....ciiriririeirierer ettt 1079

E.2. REICASE 7.4. L.t 1080
E.2.1. Migration tO VEISION 7.4 L......c.occveceieeeeseceeee et 1080

[O o T T Vo 1= 1080

E.3. REICASE 7.4 ...t 1081
E.3. L. OVEIVIEW. ...eiuiiieeteieeesiie ettt 1081

E.3.2. Migration tO VEISION 7.4........cccieeeee e steees et 1083

R R O o - T o =SSR 1084

E.3.3.1. Server Operation Changes.......ccccocvivveveeceeienieseseseseneeens 1084

E.3.3.2. Performance IMprovemMentS.........ccocvevereereeeseseseesesseeneeens 1085

E.3.3.3. Server Configuration Changes..........ccocevevevereervsenereseeenns 1087

E.3.3.4. QUEIY ChangES......ccceoviviirirreeeeie e stes e see e 1088

E.3.3.5. Object Manipulation Changes........cccccveevereeieveeneserereereeens 1089

E.3.3.6. Utility Command Changes.......c.cocurverrrrreirneneeseeseeens 1090

E.3.3.7. Data Type and Function Changes..........cccoceevreereereennnenes 1091

XXi

E.3.3.8. Server-Side Language Changes...........ccccveeereereereeeneneens 1093

E.3.3.9. PSOI ChanQES.....ccoevurerieiirieireeteeees s 1094

E.3.3.10. pg_dump ChangEsS........coceererireriinerieirieeseeesieieseeseseeseseenees 1094

E.3.3.11. [ibpg Changes.......cccveirrireinnisiese s 1095

E.3.3.12. IDBC ChanQes.....cccorurueireririeieienesesisisiesesesisissesesesssesseseseseses 1096

E.3.3.13. Miscellaneous Interface Changes..........cccccveeereiereennenene 1096

E.3.3.14. Source Code Changes.......cccceorerereiereereeene e 1096

E.3.3.15. Contrib Changes..........cocurerierieresere e 1097

E.4. REIEASE 7.3.6.....oeiee ettt e 1098
E.4.1. Migration t0 VErsion 7.3.6.......ccoceirirereieeene e 1098
E.4.2. CRANQES......oiiieieeeeieete ettt s 1098

E.5. REICASE 7.3.5. .o 1098
E.5.1. Migration to VErsion 7.3.8. ...t 1099
E.5.2. ChaNQES......cceeiiieee ettt st nas 1099

E.B. REICASE 7.3 4 oot 1099
E.6.1. Migration tO VEISION 7.3 4.....ccooveeeie e 1099
E.6.2. ChaNQES......ccoeeiiiiieee ettt ettt nas 1100

E.7. REICASE 7.3 3. .ottt 1100
E.7.1. Migration t0 VErSioN 7.3.3...c.cececeseriereeesese e seesesee e sre e e seeeenens 1100
E.7.2. ChaNQES......cci ettt sttt s nenea 1100

E.8. REICASE 7.3.2. ..ot 1102
E.8.1. Migration t0 VEIrSIiON 7.3.2......ccccveerieiereeeeeseseseeseeeeesse e ste e seeneenens 1102

S 2 O - T g To =SSR 1102

E.O. REIECASE 7.3. 1.ttt et 1103
E.9.1. Migration to VErsion 7.3 1. 1103
E.9.2. CRANGES....ci ittt 1104
E.L10. REIEASE 7.3 .ottt ettt st et ene st st enaenenns 1104
E.L0.1. OVEIVIEW.uiieeeeeeeeeiesieseeieieeee st ste e seeeesesse e saesseneeeenesseseeseeseeneenens 1104
E.10.2. Migration t0 VEIrSION 7.3ccveireireineeiessieereeseee s 1105
E.10.3. ChANQES....coiieiiriieiereeereere e 1106
E.10.3.1. Server OPeration.........ccoeereereeeenerrenereeesseeseeeeseeseseeseseesenes 1106

E.10.3.2. PerfOrmancCe.......ccccoviiiiineeeeee e 1106

E.10.3.3. PriVIIEgES ..ot 1107

E.10.3.4. Server ConfiguratiQn............ccoeerrereneeieneeneereeeseeseeees 1107

E.10.3.5. QUETIES......eooi ettt st s st ene e 1107

E.10.3.6. Object Manipulation............cccoererenereneeeeenene e 1108

E.10.3.7. Utility COMMANAS.......ceiiriiieiriene e 1109

E.10.3.8. Data Types and FUNCHONS.......c.cccoerirencnenenene e 1110

E.10.3.9. InternationalizatiQn............ccccoeoereneneneneeeeene e 1111
E.10.3.10. Server-side LangUagEeS........cccoeeerereereerereresieseeseeseeneeeene 1112

E.10.3. 11, PSOL ittt 1112
E.10.3.12. lIDPG ecveuinireieieieiisisieteese st 1112
E.10.3.13. IDBC.....ciiriieieietrerieieteee sttt 1112

E.10.3.14. Miscellaneous INterfaces.........ccocuvvvvereeereeneeneeneeens 1113
E.10.3.15. SOUICE COUE......coiireerirrerireeteeee s 1113

E.10.3.16. CONriD....cciiiieieiiieecre s 1115

E.11. REICASE 7.2.4 oottt 1115
E.11.1. Migration tO VEIrSION 7.2.4.......cccovvieiereeeeeseseseesieeesese e stesesaenennens 1115
S 5 2 1 - T o =SSR 1115
E.12. REICASE 7.2.3. .ottt 1116
E.12.1. Migration tO VEISION 7.2.3.......ccocvverereeeeeseseeseeseeeeesne e sseseeseenennens 1116
E.12.2. ChANQES....coiiiiieiiereeer et 1116

XXil

N ST = =] [=T= Y I A TR 1116

E.13.1. Migration t0 VErSiON 7.2.2.......cccveirrineinneeerieeseeeseee e 1116
E.13.2. ChANQES. ..ottt 1117
E.14. REIEASE 7.2. 1.ttt sttt st 1117
E.14.1. Migration tO VErsion 7.2.L.......cccveireineinnieerieeseeeseee e 1117
E.14.2. ChANQES... oottt 1117
E.15. REIEASE 7.2ttt bbb e e 1118
E.15.1. OVEIVIEW. .c.tiiiieeeiieieie ettt sttt s b et sbe b b e e e eneas 1118
E.15.2. Migration tO VEISION 7.2.......cccoiiireiereeienenie e 1119
E.15.3. ChAnQES. ..ottt st s e 1119
E.15.3.1. Server OPeratiOn.........occoeoueeeriereneresie e 1119

E.15.3.2. PerformancCe.......ccccoiiiiiniieeere s 1120

E.15.3.3. PriVIIEQES ..ottt 1120

E.15.3.4. Client AuthentiCatiQn............ccceererirereneeeeene e 1120

E.15.3.5. Server ConfiguratiQn............ccceeeveevenecceese e, 1121

E.15.3.6. QUETIES.....cieitiireeeirieierieesiete sttt nes 1121

E.15.3.7. Schema Manipulation...........cccccceeveneecene e, 1121

E.15.3.8. Utility Commands..........ccccevueveienesenie s 1122

E.15.3.9. Data Types and FUNCLONS.........ccccvieveveeceeene e 1122

E.15.3.10. Internationalization.............cccoeerverneeneenscseeseeseeens 1123
E.15.3.11. PL/PGSQL.ctiiiiiiieirieerieteiees e 1124
E.15.3.12. PL/PEIl.cuiiiiiieeereeet et 1124
E.15.3.13. PLITCLuitiiieeree et 1124
E.15.3.14. PL/PYINON.....ci i 1124
E.15.3.15. PSAlcvurririreiereeieeeieeeeeeeseeseeesseeesessessesseese s sssses e eenessnesa 1124
E.15.3.16. IDPG...rweoeveeeeeeeeeeeseeeeeseeeseeeesesessees s seesees s asenesa 1124
E.15.3.17. IDBC..... ettt ettt 1125
E.15.3.18. ODBCo 1126

E.15.3.19. ECPG....cci oottt ettt snn e 1126
E.15.3.20. MiSC. INtErfaces........cocvreriereriere s 1126
E.15.3.21. Build and Install...........cooereieiniiinereeeeee e 1126

E.15.3.22. SOUICE COUE......cuiiiiiieiieieeeee et 1127

E.15.3.23. CONLIRL....oiiiiisiisieeree e 1127

E.16. REIECASE 7.1.3. .ottt et st b e e e s 1128
E.16.1. Migration tO VErsion 7.1.3........cccoiieiereeeene e seeieee e 1128
E.16.2. ChANQES. ..ottt 1128
E.17. REIEASE 7.1.2. .ottt st e 1128
E.17.1. Migration tO VErsion 7.1.2........ccccuuiiereienenere e 1128
E.17.2. ChANQES. ..ottt et s s s 1128
E.18. REIEASE 7. 1. L.ttt st st sttt et sae e neas 1129
E.18.1. Migration t0 VErsion 7.1.1.......cccoeveiieieceeeee e 1129
S T O o - T Vo T S 1129
E.19. REIEASE 7.1 ..ottt et s 1129
E.19.1. Migration tO VEISION 7.1......cccocveieieieeseseeese s 1130

S B O o =TT 1= S 1130
E.20. REIEASE 7.0.3. ...ttt st sttt 1134
E.20.1. Migration t0 VErsion 7.0.3........ccccvieierereeiereseseesieeesese e e seseeseenens 1134
2 O 2 O g - T o =SSR 1134
E.21. REIEASE 7.0.2. ...ttt sttt 1135
E.21.1. Migration t0 VErsion 7.0.2........ccccviererereeereseseeseseesesesresieseseeneenens 1135

N I 1 g - T o =SSR 1135
E.22. REIEASE 7.0. 1o ittt sttt st 1135

XXii

E.23.

E.24.

E.25.

E.26.

E.27.

E.28.

E.29.

E.30.

E.31.

E.32.

E.33.

E.34.

E.35.

E.36.

E.37.

E.38.

E.39.

E.22.1. Migration to version 7.0.L.......ccccocerrinninniereereeeseeeseees s 1135

E.22.2. ChANQES.. ..ottt s 1135
REIEASE 710ttt eaea 1136
E.23.1. Migration to Version 7.0........coeereereinninnerieseeesee s 1137
E.23.2. ChAnQes.. ..ottt 1137
REIEASE B.5.3..... et e et 1143
E.24.1. Migration t0 Version 6.5.3.........cciiiiiieeere e 1143
E.24.2. ChANQES. ..ottt st s e 1143
REIEASE B.5. 2.t b 1143
E.25.1. Migration t0 Version 6.5.2.........ccccoeiiriinnene e 1144
E.25.2. ChANQES....ui ettt s e 1144
REIEASE B.5. L.t 1144
E.26.1. Migration to Version 6.5.1........cccccveveeienieiene e 1144
E.26.2. ChaNQES......ccoiieeeee ettt e 1144
REIEASE B.5.....o it 1145
E.27.1. Migration tO VErsioN B.5.........ccceeeeieveeie e 1146

E.27.1.1. Multiversion Concurrency Control.........cccceeeeeveeveevesvennenn. 1146
A O g - 1 g To =TSSR 1147
REIEASE B.4.2. ..ottt 1150
E.28.1. Migration t0 VErsion 6.4.2...........cccceveveieeienesesesseesese e sseseseeneenens 1150
2 S 0 O g - T To =TSSR 1150
REIEASE B.4. L. ...t 1150
E.29.1. Migration t0 VErsion 6.4.1........cc.ccoceverereeierieseseenieeesese e sieseseeneenens 1150
E.29.2. ChANQES.. ..ot 1150
=] (ST LTSI SRS 1151
E.30.1. Migration t0 VErSion 6.4........ccccceveirrinninneerieeseeeseee s 1152
E.30.2. ChANQES....coiiuieriiiiere et 1152
REIEASE B.3. 2.ttt st eeneas 1155
E.31.1. ChANQES....coieiiiriiertete ettt 1156
REIEASE 6.3 L.ttt et eneas 1156
E.32.1. ChANQES....coiciieieieetere et 1157
REIEASE B3ttt se e enea 1157
E.33.1. Migration t0 VErsion 6.3........cccccereirminninsienieeseeesee s 1159
E.33.2. ChanQes....coociriiieriee et 1159
REIEASE B.2. 1. et b 1162
E.34.1. Migration from version 6.2 to version 6.2.1.........cccccoovvenenenenennne 1162
E.34.2. ChANQES. ..ottt b e s 1162
REIEASE B.2.....ceieeeee e e b 1163
E.35.1. Migration from version 6.1 t0 Version G.2...........cccceeveereneneneenenncns 1163
E.35.2. Migration from version £.t0 vVersion 6.2...........cccccceerenenenenenennens 1163
E.35.3. ChanQES....c.ccoiiiee ettt st 1163
REIEASE B.1. L.t et 1165
E.36.1. Migration from version 6.1 to version 6.1.L.........cccccevvvvvcvnrceenen. 1165
E.36.2. ChaNQES......ccoiii ettt st s 1165
REIEASE B.1.....oeiiieeeeet e e b 1166
E.37.1. Migration t0 VEIrSioN B6.1........ccccccovvievieriereeene e stesieeeseee e ste e seeneenens 1166
R O g - T o =TSSR 1167
REIEASE B.0......ccuieeiieiiciese e 1168
E.38.1. Migration from version 1.09 to version 6.0........ccccccveevivnivrieriereenens 1169
E.38.2. Migration from pre-1.09 to version 6.0.........ccccovevevereenenesieseesennens 1169
TS TG TR 1 o= T o =SSR 1169
REIEASE 1.Q9......ccececeeeeeee ettt ne e eneas 1171

XXiV

E.40. REICASE 1.Q2.......eeeeeeie ettt ettt eae st e s et e e s ae e s saee s sabe e s eatesssaees 1171

E.40.1. Migration from version 1.02 to version 1.02.1........cccccoecereivnennene 1171
E.40.2. Dump/Reload ProCedUr ... 1172
E.40.3. ChAnQeS.. ..ottt 1172
E.41. RElASE 1.QL. ..ot sttt 1173
E.41.1. Migration from version 1.0 to version 1.01........ccccvevreieneinnnene 1173
I O g - T o =SSP 1174
E.42. REIEASE 1.0......oiiiiieeeee ettt st e 1175
E.42.1. ChANQES...ccuiieieeieieeie ettt sttt s e 1175
E.43. Postgres95 Release Q.03.........coo e 1176
E.43.1. ChAnQES. . ..ottt bbb e 1176
E.44. Postgres95 Release Q.02........ccoccoiiieiiesiceese ettt 1178
2t I O g =TT = S 1178
E.45. Postgres95 Release Q.0L.........coooiiiiiiesecee et 1179
F. The CVS REPOSIIONY.....iiieiecticeeste et sttt ste e este st te st e st e e saesreetesteeneenreennannas 1180
F.1. Getting The Source Via Anonymous CVS........cccocevvierienieneenese e e seeneens 1180
F.2. CVS Tree OrganiZatiOon.........ccccceieeceerieseeieseeeesieseeseesessaesesseessessessessesneensnss 1181
F.3. Getting The Source Via CVSUP........cccciviie e ste e s 1182
F.3.1. Preparing A CVSup Client System........cccccvvvvvvrrnreiesieseseseseeseenens 1183
F.3.2. Running a CVSUP ClIENt.....ccccceeceeiiese e 1183
F.3.3. INStalliNg CVSUP.....ciiiiiitieeeee st eenea 1185
F.3.4. Installation from SOUICES.......ccoeireirriresee s 1186

L B o Tot U4 g =T o) 1 1T o OSSR 1188
(00 I To Tod 2 T T <R SRSR 1188
(T o To] ST SRS 1188
G.2.1. Linux RPM INStallation.........covevreivierieieese e s 1189
G.2.2. FreeBSD INStallation.........ccccoveuerereienieeese e 1189
G.2.3. Debian PaCKAQgES. ..ot 1190
G.2.4. Manual Installation from SOUICE.......cccrevcerinenere e 1190
G.2.4.1. Installing OpenJade..........ccoeorereineienneeeee e 1190

G.2.4.2. Installing the DOcBOOK DTD Kit.........cccoeiririnininncneneneeee 1191

G.2.4.3. Installing the DocBook DSSSL Style Sheets..........coceu..... 1191

G.2.4.4. Installing JAdeTeX.......ccvuererieerieerieere et 1192

G.2.5. Detection DEONfIgUre ..o 1192

G.3. Building The DOCUMENTALION.......c.cooiiiiireiereeeeeeie e 1192
LR 0 R o 8 I ST 1193

LCTRC I |V = g o T= To [TP URPRORP 1193
G.3.3. Print Output Via JAAETEX.....ccccereriireeieirere et 1193
G.3.4. Print Output Via RTE.......couieiet e 1194
G.3.5. Plain TEXE FIlES....coiiieiieeeceeese et 1195
G.3.6. SYNtAX ChECKci ettt 1195

G.4. Documentation AUtNOING........cccoiiiieiieceee e 1195
G.4.1. EMACS/PSGML.....oiiiiiriiiriisise st 1196
G.4.2. Other EMacs MOAES.......ccoeiriririeieeeeieere et 1197

G.5. SLYIE GUITE. ...t 1197
G.5.1. ReferenCe PAgeS......cccceieieeiesieeese et ae et 1197

1231 0] [0 [ir= o] 0)Y/ 1200
a0 = OSSR 1202

XXV

List of Tables

4-1. Operator Precedence (AECIEASING)......cicurereeererrsrirertereeeeesesesresaeeeessessesses e saeseesessesseses 25
o I D = 1 = B Y] 1= 3 70
oS N1 4 1= Y o 1 o =R 71
8-3. MONELAIY TYPES....e ettt sttt et r b e et b bt e e s eneenennes 75
S N O T T = ot (=T g Y] L= OSSR 75
8-5. SpeCial CharaCler TYPES.....ocirieirieieriet ettt ettt s e 77
8-6. BINAIY DAt TYPES.....c ettt sttt sttt b et bbb 77
8-7.bytea Literal ESCAPEU OCIELS......ccoiiiieirieeriee ettt s e 77
8-8.bytea OULPUL ESCAPET OCLELS.......couiiiiiieeierieie ettt e 78
8-9. DAL/ TIME TYPES .ttt ettt sttt b et b et b et bbbt e b e st ket e bbbt e b e 79
8-10. DALE INPUL......oitiiriiereeeeiet ettt r e e et b bt e sren et eneenes 80
8-11. TIME INPUL...eeeee ettt bbb bbbt ekt b et bt bbb 81
8-12. TIME ZONE INPUL......eiitiieiti ettt b ettt b et b et b e e 81
8-13. Special Date/TimMe INPULS........ceireiriei ettt ettt 82
8-14. Date/TImMe OULPUL SEYIES... .o .ot st 83
8-15. Date Order CONVENTIONS.oouieeereeieeiesie ettt et sbe st st se e e ebesae e se e e e e e e enesreseas 83
e e ST CT=To] g 1] ([Y] 012U 86
8-17. NEtWOIrK AQUIESS TYPES. ..ot ittt sttt sttt bbb e e e besbe b e e b e e e e enesneneas 88
8-18.cidr Type INPUL EXAMPIES.....c.ooiiiiiii ettt e s 89
8-19. ObjJeCt IHENTITIET TYPES.....eitiieirieee ettt st st ae e e e sbe e 98
LS O O Y= TN o (o Tl 1Y o= 99
9-1. COMPAriISON OPEIALQIS.....ccueieeieeireeiiesteeteeteereestesessaesesseestesteessesseseessesseessestesssessesseessessesneens 101
9-2. MathematiCal OPEIatOrS.......cccocviiiieerieeeie st ere s e st e et sre e e s te e e aestesseeaesreeaesreeneens 103
9-3. Bit String BitWiSE@ OPEIALOLS.......ceeceeiiicteeiecte e st s e e e e e sae e ste s esaeste s e enaesneenaesreeneens 103
9-4. MathematiCal FUNCHONS.........ccociririeeeree e 104
9-5. TrigONOMELNC FUNCHIONS.......citiiiiieieeee et sttt sa e saesr e sense e eneenens 105
9-6. SQL String FUNCIONS and OPEIatQIS........ccveveeieeereiesienieseieeeses e seseeseeessesresressessesessessens 105
9-7. Other StriNg FUNCLONS.........coiiiiieeeeee e st e st e st aesae e e ssesaeseessenseneeneenens 107
9-8. BUIIt-IN CONVEISIONS.....ccuieiireirereiieresee ettt r s 110
9-9. SQL Binary String FUNCtions and OPeratorS.......ccccvvverereererieseseseseeseereseseseesseseesessessens 113
9-10. Other Binary StriNg FUNCHONS........coeiiiiresereeecese s seesieae et e e s e e sse s e senseessesnens 114
9-11. Regular EXpression MatCh OPEratorS........ccovioieirieirieerieesieesese et 117
9-12. Regular EXPreSSioN ALOMS... ..ottt ettt et 118
9-13. Regular EXpression QUANTIfIErS.........co i e 119
9-14. Regular EXpression CONSIIAINIS.........coiiiiiirieriecrieesie e e 119
9-15. Regular Expression Character-Entry ESCaPeS........cccveireinieininensese s 121
9-16. Regular Expression Class-Shorthand ESCAPES.........ccoecreireinininiseserese s 122
9-17. Regular EXpression CONStraint ESCAPES........ccvo it 122
9-18. Regular Expression Back REfErenCes.........cccviirciieineee e 123
9-19. ARE Embedded-Option LEHALS. ...ttt 123
9-20. FOrmMatting FUNCHIONScoueirieirieiiietee et 126
9-21. Template Patterns for Date/Time FOrmatting..........c.cccveoireineiinninsesesesee e 127
9-22. Template Pattern Modifiers for Date/Time FOrmatiing.........c.ccooererereinienesenenereneenens 128
9-23. Template Patterns for Numeric FOrmatting..........ccocovererrinieniene s 129
9-24.t0_char EXAMPIES......coiiiiiiee ettt et nae 130
9-25. DAt/ TIME OPEIALOIS.....ciuiiirtitiieeeerte ettt sttt sttt sbe st e s be e e e e e sbesbesbese e e e eneenens 131
9-26. DAte/TIME FUNCHONS.couiitiitiiieereee ettt st s s e eae 132
9-27.AT TIME ZONEVANANTScueirieiirieiirietisisieesieess st 137
9-28. GEOMELIIC OPEIALOLS......ccviiueeieiteeiesteeteete et estesressae s e steetesteeeessesseestesseessestesssensesseensessensenns 139

XXVi

9-29. GEOMETINIC FUNCLIONS.eeieicteie ettt ettt e st e et e e s et e s s e bt e s sebae e sbeessabeessseesssreessarenesans 141

9-30. Geometric Type CONVErsion FUNCHOMSoiiiirieirieenieeseeesie e e 141
9-31.cidr ANAINEt OPEIALOIS.......ciueuireeeiieiiieieiri ettt b e bbb 143
9-32.cidr andinet FUNCHONS........ooiieeeee et e e ene 143
9-33.Macaddr FUNCLIONS.......coiiiiiitiee ettt st se e sae b st se e e e eneenen 144
9-34. SEQUENCE FUNCHIOMS......ccuteeiiieiirieeeieteeee ettt e 144
9-35. Session INformation FUNCHONS. ..ottt e 148
9-36. Configuration Settings FUNCLIONS.........ccooo it e en 148
9-37. Access Privilege INqQUiry FUNCHOMNS.........cooiiiiiiiee et e 149
9-38. Schema Visibility INQUINY FUNCHOMNS.........cooiieiiene et 150
9-39. System Catalog Information FUNCLONS.........ccoiiiriiieeee e 151
9-40. Comment INformation FUNCHONS........c.oiiiiiieiiirere et s ene 152
o R I 1 VA @ 0[] = 1] =TSRSS 153
LS R o =\ VA U od T SRR 153
9-43. AQQregate FUNCLONS.cccvii e ceeies e steete e eeese s e st e te e sre e e stesreensesteeneensesneeaesrenneens 154
12-1. SQL Transaction ISolation LEVEIS..........ccceeeieieee e s 179
G I aTo T o] o] 1o 1 (=Y S 235
16-2. SYSteEM V IPC PArAMELELS......ccuiiieeitii ittt sttt st sttt sae e saae st naeesaaeen 236
20-1. Server CharaCter SELS........ccoveiirririeirri ettt sene 265
20-2. Client/Server Character Set CONVEISIONS........ccviirieireerieesieesiseses st 267
23-1. Standard StatiStICS VIEWScirieiririririrerieesie sttt 281
23-2. StatisStiCS ACCESS FUNCHIONS.......coiiiriirirertere et 283
4SRN oo | I o 4] 0 =g o =3RS 349
31-1.ConnectionPoolDataSource IMpPlEMENLALIONS......co i 422
31-2.ConnectionPoolDataSource Configuration Properties..........cceeveereereensenscneneens 423
31-3.DataSource IMPIEMENTALIONS.......cooviirire e e 424
31-4.DataSource Configuration PrOPErtiEsS.........ccocviiieirieirieereesee e 424
31-5. Additional PoolingpataSource Configuration Properties.........ccooovrerrennennencneennens 424
32-1.information_schema_catalog_name COlUMNS. ..o 428
32-2.applicable_roles L0] (1] 331 o 1S R SRSRN 428
32-3.check_constraints (O] (17271 o 1= 0SS 428
32-4.column_domain_usage COIUMNS........c.oiiiiieieire e e ene 429
32-5.column_privileges (0] (11271 0 1= PSS 429
32-6.column_udt_usage COIUMNS. ..ottt se e e e neene 430
32-7.colUMNS COIUMNS.....ctiiiee ettt et e esaesae e tesbeessesbeeneensesreennesreeneens 431
32-8.constraint_column_usage COIUMNS ...ttt e eare s 434
32-9.constraint_table_usage COIUMNS ..ottt aeesaneens 435
32-10.domain_constraints COIUMNS....ccteeecee ettt ettt st as 435
32-11.domain_constraints COIUMNS....cceteetee ettt st et s eane et s 436
32-12.domain_udt_usage COIUMNS.......cciiiiiice e s naesreeneens 437
32-13.d0MAINS COIUMNS......ccuiiiiiieieie et ste et e e e e st et este e e e saesseestesseessesteeseensesreeneesrenneens 437
32-14.element_types COIUMNS.......ccecieiiieteetiee e st e e te e s e sae e e aesbeeseeaesreeaesreeneens 440
32-15.enabled_roles COIUMNS.......coiiiiiiee ettt e e et s e e sare e beesaeesnnesnreas 442
32-16.key_column_usage COIUMNS......ccciiieiice st e e s aesreennens 443
32-17.parameters COIUMNS.....c.oi ittt et e e s e e eare e beesaeesaeeenbeesaeesnnesnreas 443
32-18.referential_constraints COlUMNS ..o 446
32-19.role_column_grants (7o) 11140] s -SSP 447
32-20.role_routine_grants COlUMNS.....eetectecee ettt e s re e 447
32-21.role_table_grants COlUMNS ...t be et e et ebe e b e ebeennas 448
32-22.role_usage_grants COlUMNS ...ttt st b b e b ennas 449
32-23.routine_privileges COlUMNS. ...t re s 449
32-24.10UtiNES COIUMNS.....ueiiiiiticie ettt ettt et e et e e e s tesae e besbeesbesbesaeensesreeneesaeennens 450

XXVii

32-25.5CNEMAta COIUMNS......ouvieicteie ettt ettt e et s st e e st e s et e s sebeessabeessasesssbeesssbessaseesssrenesarenesn 454

32-26.sql_features {00} (11331 o 3PS 455
32-27.sql_implementation_info COlUMNS ... e 455
32-28.5ql_languages COIUMNS........coiiieeeeee et se e e e ene 456
32-29.501_packages COIUMNS.......ooiiiiiirieese ettt e ae st e e ene 457
32-30.501_SIZING COIUMNS ..ottt sttt st se e be b seesse e e e e e enens 457
32-31.sql_sizing_profiles COlIUMNS.....ecceee e s s 458
32-32.table_constraints (O00] (1101 4 1S3OS 458
32-33.table_privileges (701 18] '] 1SS 459
32-34.1aD1ES COIUMNS. ... ettt ettt sttt s b et s b e e e e se e b sbe b e s e e e e enenaen 459
32-35.1rggers COIUMINS.......cii ettt e e s a e s ae e te s aeessesbeeaeesesaeenesreennens 460
32-36.usage_privileges (701 [1] '] 1S SRS 461
32-37.view_column_usage COIUMNS.......ccoiciiiicie e eneens 462
32-38.view_table_usage COIUMNS......ccoiiieiice e sreenaens 463
32-39.VIEWS COIUMNS ...t sttt b et s se et besbe e s e e e e e e ene 463
33-1. Equivalent C Types for Built-In SQL TYPES.....cecceiiieeese e seee e sae e s eneens 479
33-2. B-1r8 SIralBQIES. ... uetieeeeie e eie sttt ettt e e st e te s r e e aenbeeneenesneeaesreeneens 508
33-3. HASh SHrat@QIeS......ccueeceicice ettt s st e et s ae st e tenee e eneenens 508
G B o { (=TI (= L (=0 [RRR 508
33-5. B-tre€ SUPPOIt FUNCHONS.......ccviieeeeeeestesieseeseees s e st stes e e e ste e s e sae s snesneseessensenesnennens 509
33-6. Hash SUPPOrt FUNCLIONS........coiiieieecesese et sr et ene 509
33-7. R-tree SUPPOIt FUNCHONS......cciceeeeee s seeeses s st ee ettt e e sre e e e eneenens 509
33-8. GIST SUPPOIT FUNCLOMS.....ccuiiiieeeeeeesesteseeseesesesseseeseesaeeeessessessesseseeeesessesssssessensesessessens 509
e S A3 (T o ¢ [OF= 1 (oo LSOO 931
VI S oTo I To o =To =X (=T O o L1] 0T =S 932
e T N o To - U2 1O o] 110 1o S 933
e B o Yo I Uy Lo o J @] 1] o LSS 934
43-5.pg_amproC COIUMNS.......ooiiieeiee ettt s e e e e se e e saeseesteseeneeneenenes 934
Ve BT o Yo - Ui (o =1 A @] ¥ o1 1= SRS 935
43-7.pg_attribute (0 0] (17291 o =3RS 935
e Bt S N oo I or= A @0] 1 o LTSRS 938
43-9.pg_Class COIUMNS.......oiiiiiieee ettt st se e e e e e saesbesbesee e eneeneneas 939
43-10.pg_constraint (O] 01191 0 1SS 941
43-11.pg_conversion COIUMNS.......c.ciiiiiie ettt st ene e 943
43-12.pg_database COIUMNS........ccciiicie et s sre et sae e et e eaaeresreennas 943
Ve R G o Yo o [T o =T Lo I @) 8 3o o =S 945
43-14.pg_description (701 18] /0] 1SS 946
Ve R N o Yo e [(o]0 o N @ U4 1 S 947
e N o Yo 1T L= G @] [V ¢ 1 S 947
43-17.pg_inherits (0] 18] '] 13U 948
43-18.pg_language COIUMNS......c.ocicecee sttt s sre e ste st et e sne et e sneeneas 949
43-19.pg_largeobject (701 18] '] 1S 950
43-20.pg_listener (0] 1] '] 13U 951
43-21.pg_namespace COIUMNS.......cciiieieiicee ettt a e e eneeeesreeneas 951
43-22.pg_0PCIasS COIUMNS ...ttt et be e see e ere e be e saeeebeebeesaeeenneenreesees 951
43-23.pg_0perator COIUMNS......ceiciieticee ettt st ete st e et e e reebesbeestesbeeasesbesbeenresreennes 952
A3-24.p9_ProC COIUMNS.....ceieeitictiereete ettt re et e et ste e e sbesbeessesbeebeebesbeesesbesssebesbsensesreenees 953
A43-25.pg_reWrite COIUMNSttt ettt et sttt et e ebeebesbeentesbeensesbesaeenreereennas 955
43-26.pg_ShadoW COIUMNScciiirieiiiteeie ettt ettt s ste b e eabesbesbeebesbeestesbeessesbesaeensesreennas 956
43-27 .pg_statistic COlUMNS. ...ttt ettt et s ae e be s be et e beebeetesreennes 957
43-28.pg_triIgger COIUMNS. ..ottt et be s e st e eae e besreentesbesasebesbeenresreeneas 958
e B I oo T 1Y, o L= T O] [V 33 S 959

XXViii

A3-30. SYSIEIM VIBWS......eitiiiieieieeiere et sttt sttt sttt st st b et b et bbbt b bt e b ettt ettt bne 966

43-31.pg_indexes COIUMNS......ccciiieieeeere ettt sttt e e e e enenes 966
Ve T 2N oo T [oTox ST @ 0 o] LSS 967
43-33.p0_rUIES COIUMNS.....ciuiiiiitieieiee ettt se e et e tesee st eneeseeneeaesbesbeseeneeneeneneas 968
43-34.pg_Settings COIUMINS.....cuiiiieieieiere ettt s b e bt e e eneneas 968
e T 1o oo TRt V(T @0 | [0 o LTSRS 969
43-36.pg_tables COIUMNScouiiiieiieecee ettt st e st ae e s e sbeetesreeneebeeaeenresreennas 971
G Ry A o Yo TV (=1 @] (13 T =S 972
43-38.pg_VIEWS COIUMNS.....ccueiitiiticiiceeee ettt e e be s te e e beeaeesesaeeeesreeneetesneensesreeneas 972
51-1. SAMPIe PAQE LAYQUL......c.coiiiiiieieeee ettt e st 1028
51-2. PageHeaderData LaYQUL............ccccorirereriereeieeieriese e s s 1028
51-3. HeapTupleHeaderData LAyQUL.............cooiririeiirirere et 1029
A-1. POSIOreSQL EITOr COUBS.. ..ottt sttt et st sre e te st e e s e re s e e snesneenens 1034
B-1. MONth ADDIeVIAtIONS......cooeiiiiie e e e 1041
B-2. Day of the Week ADDreviations..........ccccooiveieciciice e 1041
B-3. Date/Time Field MOGIfIErS. ...t e 1042
B-4. TIMe Z0oNe ADDIEVIALIONS........cccoiiriieeireest ettt s 1042
B-5. Australian Time Zone ADDreVviations...........ccocereinninnereenee s 1045
O S @ T (= VY17 0] (o LTSS 1047

List of Figures

48-1. Structured Diagram of a Genetic AlgOtRM..........ccocviiiiineiree e 1020

List of Examples

8-1. USING the CharaCter tYPS.....ccvieeeee ettt s enenes 76
e U LS o g T= oo o [=Y= Vo T 4 o - 85
8-3. USING the Dit StHNG tYPES....cci it e e sre e 90
10-1. Exponentiation Operator Type ReSOIULIQN.ccoocireriririrrreree s 164
10-2. String Concatenation Operator Type ReSOIULON.ccviriireirereereeeee s 165
10-3. Absolute-Value and Factorial Operator Type ResolutiQn...........ccccveereereennennencnienes 165
10-4. Rounding Function Argument Type ReSOIULION..........ccooriririirieireree s 167
10-5. Substring Function Type RESOIULIQN.ccoiiriiriirrirereere e 167
10-6.character ~ Storage TYPE CONVEISION........ccurueireirierireetiesiee st see s sse s seenes 168
10-7. Type Resolution with Underspecified Types in a Union...........coeoveneennennennenneens 169
10-8. Type Resolution in a Simple UNIOM........cccririeceeseeeseesee e 170
10-9. Type Resolution in a TranspOSEed UNION..........ccoeereiiririineriiesieesieesee s seseeseesseeseens 170
11-1. Setting up a Partial Index to Exclude Common Values...........ccoecveineeneinnenseeneens 175
11-2. Setting up a Partial Index to Exclude Uninteresting Values..........c.ccccveveveinninnnneneenn 176
11-3. Setting up a Partial UniqUe INAEX.........coiiiieeeee e e 177
19-1. An exampl®g_hba.conf — fil@ ..o e 256
19-2. An exampleg_ident.conf L= USSR 261
27-1. libpg EXampPle Programi.L. ...t e e e sne s 333
27-2. libpg EXAmMPIE Programi.2... ...ttt en s 335
27-3. libpg EXample Programi.d... ..ot st sne s 338
28-1. Large Obijects with libpg Example Programi...........ccceecierieieneiceese e eeese e 344
29-1. pgtcl EXampPle PrOQIalL........cccoiieieiiieieiieecctestesieestesteestesteeeessesseestesaeessessesssensesneenssssesnenns 373
31-1. Processing a Simple Query in IDBEC ..ot s 395

XXIX

31-2. Setting fetch size to turn cursors 0N and.off...........cccccrieinne s 395

31-3. Deleting ROWS iN IDBC.........cociiiieiisiesierieesie ettt 397
31-4. Calling @ built in Stored fFUNCHAN..........c.oii e 397
31-5. Gettingefcursor values from a fUNCHOM..........coeoiiireine e 397
31-6. Treatingefcursor @S & AISINCE LYPQ......cviuiireiiriere e 398
31-7. Dropping a Table in IDBC.......c.ooiieeeee e 398
31-8. Processing Binary Data in JDBC..........ooi et 399
31-9.DataSource COAE EXAMPIE......cceiiiiiieiieie et e 425
31-10.DataSource JNDI COAE EXAMPIE.....coiiiiiieieiiriere et ea 425
36-1. Manual Installation of PL/PGSQL.....cc.oiiiiiieiiirere et s 545
37-1. APL/PGSQL Trigger ProCEAULE.........cociiirieeeeirie ettt ene 570
37-2. Porting a Simple Function from PL/SQL to PL/PGSQL......cccoiiiiireirnere e 571
37-3. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL........... 572
37-4. Porting a Procedure With String Manipulation andgirParameters from PL/SQL to PL/pgSQL
573
37-5. Porting a Procedure from PL/SQL t0 PL/POSQL.......oore e 575

XXX

Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part lis an informal introduction for new users.

- Part ldocuments the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

- Part Il describes the installation and administration of the server. Everyone that runs a PostgreSQL
server, be it for private use or for others, should read this part.

- Part IV describes the programming interfaces for PostgreSQL client programs.

- Part V contains information for advanced users about the extensibility capabilities of the server.
Topics are, for instance, user-defined data types and functions.

- Part VIcontains information about the syntax of SQL commands, client and server programs. This
part supports the other parts with structured information sorted by command or program.

- Part VIl contains assorted information that can be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports SQL92 and
SQL99 and offers many modern features:

« complex queries

- foreign keys

. triggers

« views

- transactional integrity

- multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

- data types

- functions

- operators

- aggregate functions
+ index methods

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

- procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone
free of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over a decade of devel-
opment behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented e design of POSTGRESd the definition of the initial data

model appeared ilthe POSTGRES data mod&he design of the rule system at that time was de-
scribed inThe design of the POSTGRES rules systEne rationale and architecture of the storage
manager were detailed the design of the POSTGRES storage system

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGREfS released to a few external users in June 1989. In response

to a critique of the first rule systenh (commentary on the POSTGRES rules syktta rule system

was redesigneddn Rules, Procedures, Caching and Views in Database Systems/ersion 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, lllustra Infor-

mation Technologies (later merged into Inforfiwhich is now owned by IBM) picked up the code

and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. SupportGrdwr BY
query clause was also added.

- In addition to the monitor program, a new program (psql) was provided for interactive SQL queries,
which used GNU Readline.

- A new front-end librarylibpgtcl , supported Tcl-based clients. A sample shadlclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

- The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

« The instance-level rule system was removed. Rules were still available as rewrite rules.

- A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

« GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version nhumbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be folmgendix E

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasitaéc Everything that represents

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced fonexample). Within such passages, italicexample) indicate placeholders;

you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold faceXample), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: braglatd]() indicate optional
parts. (In the synopsis of a Tcl command, question matksae used instead, as is usual in Tcl.)
Braces{ and}) and vertical lines|() indicate that you must choose one alternative. Dats) mean
that the preceding element can be repeated.

Preface

Where it enhances the clarity, SQL commands are preceded by the promand shell commands
are preceded by the prom@tNormally, prompts are not shown, though.

An administratoris generally a person who is in charge of installing and running the serugseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.
READMEs

READMEHiles are available for most contributed packages.
Web Site

The PostgreSQL web sftearries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5. http://www.postgresql.org

Preface

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

- The exact sequence of stéfpam program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a baELECT statement without the preceding
CREATE TABLEand INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything inyqagirc start-up file.)

An easy start at this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example,
but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

Preface

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,

show it, even if you do not understand it. If the program terminates with an operating system error,

say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output

from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all
details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the comm8BLOECT version(); to find out the version

of the server you are connected to. Most executable programs also suppertian option; at
leastpostmaster --version andpsgl --version should work. If the function or the options

do not exist then your version is more than old enough to warrant an upgrade. If you run a prepack-
aged version, such as RPMs, say so, including any subversion the package may have. If you are
talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.4.2 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume

Vi

Preface

everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in total
is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don't say “the
postmaster crashed” when you mean a single backend process went down, nor vice versa. Also, client
programs such as the interactive frontend “psql” are completely separate from the backend. Please try
to be specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgt&l-bugs@postgresgl.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresqgl.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpgsgksgl@postgresgl.org >

or <pgsql-general@postgresq|l.org >, These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsql-hackers@postgresqgl.org >. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report pgsgl-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresgl.org > with the single word
help in the body of the message.

Vii

|. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reaBarg |l to gain a
more formal knowledge of the SQL language Rart IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should alBanteifd

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution

or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user, no superuser (root) access is required.

If you are installing PostgreSQL yourself, then referGbapter 14for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work
to do. For example, if the database server machine is a remote machine, you will need to set the
PGHOS®nvironment variable to the name of the database server machine. The environment variable
PGPORTNay also have to be set. The bottom line is this: if you try to start an application program and
it complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server
program is calleghostmaster

- The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution, most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by the originsimaster process. Thus, the

Chapter 1. Getting Started

postmaster is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In this case you can omit this step and skip ahead to the next
section.

To create a new database, in this example namei, you use the following command:
$ createdb mydb
This should produce as response:

CREATE DATABASE

If s0, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was
not set correctly. Try calling the command with an absolute path instead:

$ lusr/local/pgsgl/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check back in the installa-
tion instructions to correct the situation.

Another response could be this:

createdb: could not connect to database templatel: could not connect to server:
No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started ehetedb expected it. Again,
check the installation instructions or consult the administrator.

If you do not have the privileges required to create a database, you will see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same

Chapter 1. Getting Started

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the databaseydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More aboutreatedo anddropdb may be found ircreatedtanddropdbrespectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

« Running the PostgreSQL interactive terminal program, casg, which allows you to interac-
tively enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to
create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further iRart IV.

You probably want to start ujpsql , to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

If you leave off the database name then it will default to your user account name. You already discov-
ered this scheme in the previous section.

In psql , you will be greeted with the following message:

Welcome to psqgl 7.4.2, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>

name as the operating system user that started the server, and it also happens that that user always has permission to create
databases. Instead of logging in as that user you can also specify tiption everywhere to select a PostgreSQL user nhame
to connect as.

Chapter 1. Getting Started

The last line could also be
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purpose
of this tutorial this is not of importance.

If you have encountered problems startisgl then go back to the previous section. The diagnostics
of psgl andcreatedb are similar, and if the latter worked the former should work as well.

The last line printed out bysgl is the prompt, and it indicates thgdqgl is listening to you and that
you can type SQL queries into a work space maintainepshy . Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 7.4.2 on i586-pc-linux-gnu, compiled by GCC 2.96
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin

with the backslash charactek,”™ Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out ofpsqgl , type
mydb=> \q

andpsgl will quit and return you to your command shell. (For more internal commands\2y@e
thepsgl prompt.) The full capabilities ofsgql are documented ipsql If PostgreSQL is installed
correctly you can also typean psgl at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when you see
fit.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, includidgderstanding the New SQand A Guide to the

SQL StandardYou should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a databasenmaiess described in
the previous chapter, and have started psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/ . Refer to theREADMEile in that directory for how to use them. To start the tutorial,
do the following:

$ cd ... [src/tutorial
$ psqgl -s mydb

mydb=> \i basics.sql

The\i command reads in commands from the specified file.-§heption puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the filebasics.sql

2.2. Concepts

PostgreSQL is aelational database management syst@gDBMS). That means it is a system for
managing data stored imelations Relation is essentially a mathematical termtimole The notion

of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection mfws Each row of a given table has the same set of named
columnsand each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a databasster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature

Chapter 2. The SQL Language

prcp real, -- precipitation
date date

);

You can enter this int@sgl with the line breakspsgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashgs$n*

troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in
length.int is the normal integer typeeal is a type for storing single precision floating-point num-
bers.date should be self-explanatory. (Yes, the column of tgpee is also namedate . This may

be convenient or confusing -- you choose.)

PostgreSQL supports the usual SQL types, smallint , real , double precision , char(N),

varchar(N), date , time , timestamp , andinterval , as well as other types of general utility and

arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined
data types. Consequently, type names are not syntactical key words, except where required to support
special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point

)i
Thepoint type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLEtablename ;

2.4. Populating a Table With Rows

TheINSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco’, 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes &s in the example. Thdate type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Thepoint type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco’, '(-194.0, 53.0));

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

Chapter 2. The SQL Language

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco’, 43, 57, 0.0, '1994-11-29";

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29’, 'Hayward’, 54, 37);
Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have usedOPYto load large amounts of data from flat-text files. This is usually
faster because t@OPYcommand is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’'/home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more abagifeommand irCOPY.

2.5. Querying a Table

To retrieve data from a table, the tablegiseried An SQL SELECTstatement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tedlther |, type:

SELECT * FROM weather;

(here* means “all columns”) and the output should be:

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You may specify any arbitrary expressions in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Chapter 2. The SQL Language

Notice how theAS clause is used to relabel the output column. (It is optional.)

Arbitrary Boolean operator&\\DQ OR andNOT) are allowed in the qualification of a query. For exam-
ple, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
WHERE city = 'San Francisco’
AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
+ + e +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
1 row)

As a final note, you can request that the results of a query can be returned in sorted order or with
duplicate rows removed:

SELECT DISTINCT city
FROM weather
ORDER BY city;

Hayward
San Francisco
(2 rows)

DISTINCT andORDER BYan be used separately, of course.

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called a
join query. As an example, say you wish to list all the weather records together with the location of
the associated city. To do that, we need to compare the city column of each row of the weather table
with the name column of all rows in the cities table, and select the pairs of rows where these values
match.

Note: This is only a conceptual model. The actual join may be performed in a more efficient
manner, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
+ + +ommem + + +
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

« There are two columns containing the city name. This is correct because the lists of columns of the
weather and thecities table are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query whenwWieERElause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong
to, but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan theveather table and for each row to find the matchitides row. If no matching row

is found we want some “empty values” to be substituted forctties table’s columns. This kind

of query is called amuter join (The joins we have seen so far are inner joins.) The command looks
like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date [name | location
+ + e + + +
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called &ft outer joinbecause the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

Chapter 2. The SQL Language

We can also join a table against itself. This is calleseH join As an example, suppose we wish to

find all the weather records that are in the temperature range of other weather records. So we need to
compare theemp_lo andtemp_hi columns of eachweather row to thetemp_lo andtemp_hi

columns of all otheweather rows. We can do this with the following query:

SELECT Wi1.city, Wl.temp_lo AS low, W1l.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1l.temp_lo < W2.temp_lo
AND W1l.temp_hi > W2.temp_hi;

city | low | high | city | low | high
--------------- [R R — S S—
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather tabl@/aandw?2to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, €.9.:

SELECT *
FROM weather w, cities ¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute theount , sum, avg (average)max (maximum) andnin (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try
SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregatex cannot be used in th&yHEREIlause. (This restriction

exists because th&#HERElause determines the rows that will go into the aggregation stage; so it has

to be evaluated before aggregate functions are computed.) However, as is often the case the query can
be restated to accomplish the intended result, here by usobguery

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

10

Chapter 2. The SQL Language

San Francisco
(2 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination v@ROUP B¥lauses. For example, we can get the
maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
_______________ SR
Hayward | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows ust#/ING

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

Hayward | 37
(1 row)

which gives us the same results for only the cities that haverafl_lo values below 40. Finally, if
we only care about cities whose names begin wi&h tve might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'S%’ O
GROUP BY city
HAVING max(temp_lo) < 40;

0 TheLIKE operator does pattern matching and is explainegeation 9.6

It is important to understand the interaction between aggregates and S(IEREnd HAVING
clauses. The fundamental difference betwegfEREANdHAVING s this: WHERBelects input rows

before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereaBIAVING selects group rows after groups and aggregates are computed. Thus, the
WHERElause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other HamiiNGclause always con-

tains aggregate functions. (Strictly speaking, you are allowed to wit@\ANG clause that doesn’t

use aggregates, but it's wasteful: The same condition could be used more efficiently\atERE
stage.)

Observe that we can apply the city name restrictioWHEREsince it needs no aggregate. This is more
efficient than adding the restriction HAVING because we avoid doing the grouping and aggregate
calculations for all rows that fail th&yHEREheck.

11

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using ti®DATEcommand. Suppose you discover the temperature
readings are all off by 2 degrees as of November 28. You may update the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28’;

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
+ + e +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Suppose you are no longer interested in the weather of Hayward. Then you can do the following to
delete those rows from the table. Deletions are performed usirpehETEcommand:

DELETE FROM weather WHERE city = 'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form
DELETE FROMablename ;

Without a qualification DELETEwiIll remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

12

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples foun€hapter 20 change or improve them, so it

will be of advantage if you have read that chapter. Some examples from this chapter can also be found
in advanced.sgl in the tutorial directory. This file also contains some example data to load, which

is not repeated here. (Refer$ection 2.1for how to use the file.)

3.2. Views

Refer back to the queries fBection 2.6 Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can createviewover the query, which gives a name to the query that you can refer
to like an ordinary table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which may change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweather andcities tables fromChapter 2 Consider the following problem: You want
to make sure that no one can insert rows inweather table that do not have a matching entry
in thecities table. This is called maintaining threferential integrityof your data. In simplistic
database systems this would be implemented (if at all) by first looking aitite table to check

if a matching record exists, and then inserting or rejecting theweather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar(80) primary key,
location point

);

13

Chapter 3. Advanced Features

CREATE TABLE weather (

city varchar(80) references cities,
temp_lo int,

temp_hi int,

prcp real,

date date

);
Now try inserting an invalid record:
INSERT INTO weather VALUES ('Berkeley’, 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "$1"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you @hapter Sor more information. Making correct use of

foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactionsre a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from

Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates intéransactiongives us this guarantee. A transaction is said to
beatomic from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly

14

Chapter 3. Advanced Features

thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance
that the debit to his account will disappear in a crash just as he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN andCOMMITcommands. So our banking transaction would actually look like

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

-- etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the comnRdid.BACKnstead ofCOMMIT and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue aBEGIN command, then each individual statement has an im@EGIN and (if successful)
COMMITwrapped around it. A group of statements surrounde8®@IN and COMMITis sometimes

called atransaction block

Note: Some client libraries issue BEGIN and COMMITcommands automatically, so that you may
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A tabldties and a tableapitals . Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you're really clever you
might invent some scheme like this:

CREATE TABLE capitals (

name text,
population real,

altitude int, -- (in ft)
state char(2)

15

Chapter 3. Advanced Features

CREATE TABLE non_capitals (

name text,
population real,
altitude int -- (in ft)

);

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, to
name one thing.

A better solution is this:

CREATE TABLE cities (

name text,
population real,
altitude int -~ (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row ofapitals inheritsall columns game, population , andaltitude) from its

parent cities . The type of the columnameistext , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ R —
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude

16

Chapter 3. Advanced Features

___________ oo

Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here theONLYbeforecities indicates that the query should be run over onlydiiies table, and
not tables belowities in the inheritance hierarchy. Many of the commands that we have already
discussed -SELECT, UPDATE andDELETE-- support thisONLYnotation.

3.6. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL wéliositnks to
more resources.

1. http://www.postgresgl.org

17

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
data commands. The rest treats several aspects that are important for tuning a database for optimal
performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look rdd VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged tBadddirst. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequenceaafmmandsA command is composed of a sequenceobens
terminated by a semicolon (*;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be &«ey word anidentifier, a quoted identifier a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, commentgan occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the&JPDATECommand always requiresSET token to appear in a certain position, and this
particular variation ofINSERT also requires &ALUESIn order to be complete. The precise syntax
rules for each command are describeéart VI.

4.1.1. Identifiers and Key Words

Tokens such aSELECT, UPDATE or VALUESIn the example above are exampleskey words that

is, words that have a fixed meaning in the SQL language. The tak¥nFABLEand A are exam-

ples ofidentifiers They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C

SQL identifiers and key words must begin with a leti@iz(but also letters with diacritical marks

and non-Latin letters) or an underscorg. (Subsequent characters in an identifier or key word can be
letters, underscores, digi3-0), or dollar signs$). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use may render applications less portable. The

20

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more thBWMEDATALEN characters of an identifier; longer names can be
written in commands, but they will be truncated. By defaNWMEDATALERs 64 so the maximum
identifier length is 63. If this limit is problematic, it can be raised by changingNARRIEDATALEN
constant irsrc/include/postgres_ext.h

Identifier and key word names are case insensitive. Therefore
UPDATE MY_TABLE SET A = 5;
can equivalently be written as
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: tidelimited identifieror quoted identifierIt is formed by en-
closing an arbitrary sequence of characters in double-qubjes delimited identifier is always an
identifier, never a key word. Seelect' could be used to refer to a column or table named “select”,
whereas an unquotestlect would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifié&¥®Q foo , and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOQ" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thie®, should be equivalent tt=OO" not"foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds dafplicitly-typed constants PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. The implicit constants are described below; explicit constants
are discussed afterwards.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single ¢)iogeg.(
'This is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent

21

Chapter 4. SQL Syntax
single quotes, e.gDianne”s horse’ . In PostgreSQL single quotes may alternatively be escaped
with a backslash\(), e.g.,'Dianne\'s horse’

C-style backslash escapes are also availablas a backspacaf is a form feed)n is a newline,

\r is a carriage returnj is a tab, and xxx , wherexxx is an octal number, is a byte with the
corresponding code. (It is your responsibility that the byte sequences you create are valid characters
in the server character set encoding.) Any other character following a backslash is taken literally.
Thus, to include a backslash in a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespétheat least one newlinare concatenated
and effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
‘bar’;

is equivalent to
SELECT ‘foobar’;
but
SELECT 'foo’ ‘bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. Bit-String Constants

Bit-string constants look like string constants witlB &upper or lower case) immediately before the
opening quote (no intervening whitespace), eByLp01’ . The only characters allowed within bit-
string constants ai@and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leadipger
or lower case), e.gX'1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants.

4.1.2.3. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits [digits][e[+-] digits]
[digits]. digits [e[+-] digits]
digits e[+-] digits

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after

the decimal point, if one is used. At least one digit must follow the exponent magkeif bne is

present. There may not be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

22

Chapter 4. SQL Syntax

42

3.5

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typeinteger if its value fits in typeinteger (32 bits); otherwise it is presumed to be typgint

if its value fits in typebigint (64 bits); otherwise it is taken to be typemeric . Constants that
contain decimal points and/or exponents are always initially presumed to beuygéc .

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a humeric value to be treated asdiypé€float4)

by writing

REAL '1.23' -- string style
1.23:REAL -- PostgreSQL (historical) style

4.1.2.4. Constants of Other Types

A constant of ararbitrary type can be entered using any one of the following notations:

type ' string
‘string i type
CAST ('string ' AS type)

The string’s text is passed to the input conversion routine for the type dgibed. The result is a
constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is passed as an argument to a non-overloaded
function), in which case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string ')

but not all type names may be used in this way; Seetion 4.2.8or details.

The:: , CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discusse&étction 4.2.8But the formtype ' string ' can only be used

to specify the type of a literal constant. Another restrictiontyge * string ° is that it does not

work for array types; use or CAST() to specify the type of an array constant.

4.1.3. Operators

An operator name is a sequence of uNEMEDATALEN (63 by default) characters from the follow-
ing list:

<>~ 1@FWBNE&]?

23

Chapter 4. SQL Syntax

There are a few restrictions on operator names, however:

- -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

- A multiple-character operator name cannot end ar - , unless the name also contains at least one
of these characters:

~1@#%NE&|'?

For example@-is an allowed operator name, but is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named@ you cannot writeX*@Y, you must writex* @Yto ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an

operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign &) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign may be part of an
identifier.

- Parentheseg)() have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

- Brackets|[|) are used to select the elements of an array.S&etion 8.1For more information on
arrays.

« Commas () are used in some syntactical constructs to separate the elements of a list.

« The semicolon;() terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

- The colon () is used to select “slices” from arrays. (S8ection 8.10 In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

« The asterisk¥) has a special meaning when used in 8§ ECTcommand or with theCOUNT
aggregate function.

« The period () is used in numeric constants, and to separate schema, table, and column names.

24

Chapter 4. SQL Syntax

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with and extends to the matching occurrence/of These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-1shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators

< and> have a different precedence than the Boolean operatosnd>=. Also, you will sometimes

need to add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;

will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late - timtlefined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element IAssociativity Description
left table/column name separator
left PostgreSQL-style typecast

[1 left array element selection

- right unary minus

" left exponentiation

* 1 % left multiplication, division, modulo

+ - left addition, subtraction

25

Chapter 4. SQL Syntax

Operator/Element IAssociativity Description

IS IS TRUE, IS FALSE, IS
UNKNOWNS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defingd
operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

IAND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used iOBERATORYnNtax, as for example in
SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATORoONSstruct is taken to have the default precedence showabte 4-1for “any other”
operator. This is true no matter which specific operator name appears ORHRATOR()

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target liss&lLtheTcommand,

as new column values INSERT or UPDATE or in search conditions in a number of commands. The
result of a value expression is sometimes callegtalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also sedlied expressionr even
simply expressions The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value.

« A column reference.

« A positional parameter reference, in the body of a function definition or prepared statement.
« A subscripted expression.

- Afield selection expression.

« An operator invocation.

- A function call.

26

Chapter 4. SQL Syntax

« An aggregate expression.
« Atype cast.

- A scalar subquery.

- An array constructor.

- Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate locatiorGhapter 9An example is théS NULL clause.

We have already discussed constantSéation 4.1.2The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form

correlation . columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a
table defined by means ofRROMclause, or one of the key word&EwWor OLD (NEwand OLD can

only appear in rewrite rules, while other correlation names can be used in any SQL statement.) The
correlation name and separating dot may be omitted if the column name is unique across all the tables
being used in the current query. (See &¥@pter 7)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL

statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a functidapt , as
CREATE FUNCTION dept(text)y RETURNS dept
AS 'SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here thes1 will be replaced by the first function argument when the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression [subscript]

27

Chapter 4. SQL Syntax

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression [lower_subscript : upper_subscript]

(Here, the bracketp] are meant to appear literally.) Eashbscript is itself an expression,
which must yield an integer value.

In general the arragxpression must be parenthesized, but the parentheses may be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multi-dimensional. For example,

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are requiredS8eton 8.1Gor more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression . fieldname

In general the rovexpression must be parenthesized, but the parentheses may be omitted when
the expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules &ection 4.1.3or is one of the key wordsND
OR andNOT, or is a qualified operator name in the form

OPERATOR{chema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the u§drapter Adescribes the built-in operators.

28

Chapter 4. SQL Syntax

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([expression [[expression 1)

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is irChapter 9 Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expressiaepresents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema
name), andexpression is any value expression that does not itself contain an aggregate
expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not --- but all the standard ones do.) The second form is the same as the firsiLkince

is the default. The third form invokes the aggregate for all distinct non-null values of the expression
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count() aggregate function.

For examplegount(*) yields the total number of input rowsount(fl) yields the number of input
rows in whichfl is non-null;count(distinct f1) yields the number of distinct non-null values
of f1.

The predefined aggregate functions are describ&eation 9.150ther aggregate functions may be
added by the user.

An aggregate expression may only appear in the result lispaiNGclause of eSELECTcommand.
It is forbidden in other clauses, such\W$lIEREbecause those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquergdéstien 4.2.&ndSection 9.15 the aggre-

gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
argument contains only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result listtafiNGclause applies with respect

to the query level that the aggregate belongs to.

29

Chapter 4. SQL Syntax

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression : type

The CASTsyntax conforms to SQL; the syntax with is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as show8dntion 4.1.2.4A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision can't be used this way, but the equivaléhtats8 can. Also, the names
interval , time , andtimestamp can only be used in this fashion if they are double-quoted,
because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided in new applications. (The function-like syntax is
in fact just a function call. When one of the two standard cast syntaxes is used to do a run-time
conversion, it will internally invoke a registered function to perform the conversion. By convention,
these conversion functions have the same name as their output type, and thus the “function-like
syntax” is nothing more than a direct invocation of the underlying conversion function. Obviously,
this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordina®ELECTquery in parentheses that returns exactly one row with one
column. (SeeChapter 7for information about writing queries.) THeELECTquery is executed and

the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See d@®ution 9.160r other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

30

Chapter 4. SQL Syntax

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements.
A simple array constructor consists of the key wa@f@RAY a left square brackdt, one or more
expressions (separated by commas) for the array element values, and finally a right squaré bracket
For example,

SELECT ARRAY[1,2,3+4];
array

The array element type is the common type of the member expressions, determined using the same
rules as fotUNIONor CASEconstructs (se8ection 10.5

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key wordARRAYmay be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
array

{{1.2}.{3.4}}
(1 row)

SELECT ARRAYI[1,2],[3.4]];
array

{{1.2}.{3.4}}
1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a SubARRAYconstruct. For example:

CREATE TABLE arr(fl int[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY][[5,6],[7,8]]);

SELECT ARRAYI[f1, f2, '{{9,10}{11,12}}:int]] FROM arr;
array

{{{1,2},{3,41},{{5.6}.{7.8}},{{9,10},{11,12}}}
(1 row)

Itis also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key wordaRRAYfollowed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

31

Chapter 4. SQL Syntax

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built wiliRRAYalways begin with one. For more information about
arrays, se&ection 8.10

4.2.11. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();

thensomefunc() would (probably) not be called at all. The same would be the case if one wrote
SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found

in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation ordeHERBNdHAVINGclauses, since

those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDORNOTcombinations) in those clauses may be reorganized in any manner allowed by the laws

of Boolean algebra.

When it is essential to force evaluation ordeGASEconstruct (se&ection 9.1 may be used. For
example, this is an untrustworthy way of trying to avoid division by zero\WwHERElause:

SELECT ... WHERE x <> 0 AND y/x > 1.5
But this is safe:
SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would doubtless be best to sidestep the problem by
writingy > 1.5*x instead.)

32

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable -- it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covere@livapter 7 Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation t8hapter 8 Some of the frequently used data typesiateger for whole
numberspumeric for possibly fractional numbergxt for character stringslate for datestime

for time-of-day values, antinestamp for values containing both date and time.

To create a table, you use the aptly nan@REATE TABLEEommand. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedy first_table with two columns. The first column is named
first_column and has a data type @fxt ; the second column has the naseeond_column and

the typeinteger . The table and column names follow the identifier syntax explaine8eiction

4.1.1 The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give nhames to your
tables and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,

33

Chapter 5. Data Definition

name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it usingdROP TABLEommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script
files to unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look iS&ction 5.6ater in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahe&htapter Gand read the rest of

this chapter later.

5.2. System Columns

Every table has severalstem columnthat are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was created WAiRgOUT OIDSIin which case

this column is not present). This column is of tywe (same name as the column); s&ection
8.11for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies, since without it, it's difficult to tell which individual table a
row came from. Theableoid can be joined against thd column ofpg_class to obtain

the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

34

Chapter 5. Data Definition

cmin
The command identifier (starting at zero) within the inserting transaction.
xXmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version: That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that althougtctiie can be
used to locate the row version very quickly, a rowtsl will change each time it is updated or
moved byVACUUM FULLThereforectid is useless as a long-term row identifier. The OID, or
even better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-
lived database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that
OIDs are unique, unless you take steps to ensure that they are unique. Recommended practice when
using OIDs for row identification is to create a unique constraint on the OID column of each table for
which the OID will be used. Never assume that OIDs are unique across tables; use the combination
of tableoid and row OID if you need a database-wide identifier. (Future releases of PostgreSQL are
likely to use a separate OID counter for each table, sotéibétoid ~ mustbe included to arrive at a
globally unique identifier.)

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedutisapgts

21for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit ¢f Billion) SQL com-
mands within a single transaction. In practice this limit is not a problem --- note that the limit is on
number of SQL commands, not number of rows processed.

5.3. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipu-
lation command can also request explicitly that a column be set to its default value, without knowing
what this value is. (Details about data manipulation commands &hapter 6)

If no default value is declared explicitly, the null value is the default value. This usually makes sense
because a null value can be thought to represent unknown data.

In a table definition, default values are listed after the column data type. For example:
CREATE TABLE products (
product_no integer,

name text,
price numeric DEFAULT 9.99

35

Chapter 5. Data Definition

The default value may be a scalar expression, which will be evaluated whenever the default value is
inserted fotwhen the table is created).

5.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,

however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no data type that accepts only positive num-
bers. Another issue is that you might want to constrain column data with respect to other columns or
rows. For example, in a table containing product information, there should only be one row for each

product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a
certain column must satisfy an arbitrary expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECHKollowed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

);

So, to specify a named constraint, use the key vadiSTRAINTfollowed by an identifier followed
by the constraint definition.

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),

36

Chapter 5. Data Definition

CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from the column definitions. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible. The above example could also be
written as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);
or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);
It's a matter of taste.

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if one operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section should be used.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL
name text NOT NULL
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is function-
ally equivalent to creating a check constralfECK ¢olumn_name IS NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot give
explicit names to not-null constraints created that way.

37

Chapter 5. Data Definition

Of course, a column can have more than one constraint. Just write the constraints after one another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
);

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULLconstraint has an inverse: thNeJLL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply defines the default behavior that the
column may be null. Th&lULL constraint is not defined in the SQL standard and should not be used

in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert thiOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE
name text,
price numeric

);
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,

38

Chapter 5. Data Definition

UNIQUE (a, ¢)

It is also possible to assign names to unique constraints:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

In general, a unique constraint is violated when there are (at least) two rows in the table where the
values of each of the corresponding columns that are part of the constraint are equal. However, null
values are not considered equal in this consideration. That means even in the presence of a unique
constraint it is possible to store an unlimited number of rows that contain a null value in at least one
of the constrained columns. This behavior conforms to the SQL standard, but we have heard that other
SQL databases may not follow this rule. So be careful when developing applications that are intended
to be portable.

5.4.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application

39

Chapter 5. Data Definition

that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintaireféinential integritybetween
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no)
quantity integer

);

Now it is impossible to create orders witihoduct_no entries that do not appear in the products
table.

We say that in this situation the orders table is teerencingtable and the products table is the
referencedable. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as the referenced
column.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, ¢) REFERENCES other_table (cl, c2)

40

Chapter 5. Data Definition

Of course, the number and type of the constrained columns needs to match the number and type of
the referenced columns.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Note also that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to specify that as
well. Intuitively, we have a few options:

- Disallow deleting a referenced product
+ Delete the orders as well
« Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: When someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i
CREATE TABLE order_items (

product_no integer REFERENCES products ON DELETE RESTRICT
order_id integer REFERENCES orders ON DELETE CASCADE

41

Chapter 5. Data Definition

quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common of®B83RICT can also be written
asNO ACTIONand it's also the default if you do not specify anything. There are two other options
for what should happen with the foreign key columns when a primary key is defgggddNULLand

SET DEFAULT Note that these do not excuse you from observing any constraints. For example, if an
action specifieSET DEFAULTbut the default value would not satisfy the foreign key, the deletion of
the primary key will fail.

Analogous tadON DELETEhere is als®©ON UPDATRvhich is invoked when a primary key is changed
(updated). The possible actions are the same.

More information about updating and deleting data i€apter 6

Finally, we should mention that a foreign key must reference columns that are either a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE

5.5. Inheritance

Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (

name text,
population float,
altitude int -~ (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row of capitaleheritsall attributes (name, population, and altitude) from its parent,
cities. The type of the attribute nametést , a native PostgreSQL type for variable length character
strings. The type of the attribute populatiorfligt , a native PostgreSQL type for double precision
floating-point numbers. State capitals have an extra attribute, state, that shows their state. In Post-
greSQL, a table can inherit from zero or more other tables, and a query can reference either all rows
of a table or all rows of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500ft:

SELECT name, altitude
FROM cities

42

Chapter 5. Data Definition

WHERE altitude > 500;

which returns:

name | altitude
___________ N
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ B ——
Las Vegas | 2174
Mariposa | 1953

Here the “ONLY"” before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATEandDELETE-- support this “ONLY” notation.

In some cases you may wish to know which table a particular row originated from. There is a system
column calledTABLEOIDin each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities ¢
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
+ +
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

43

Chapter 5. Data Definition

Deprecated: In previous versions of PostgreSQL, the default behavior was not to include child
tables in queries. This was found to be error prone and is also in violation of the SQL99 standard.
Under the old syntax, to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending *, as well as explicitly specify
not scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for
an undecorated table name is to scan its child tables too, whereas before the default was not to
do so. To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresgl.conf file.

A limitation of the inheritance feature is that indexes (including unigue constraints) and foreign key
constraints only apply to single tables, not to their inheritance children. Thus, in the above example,
specifying that another table’s colunREFERENCES cities(name) would allow the other table

to contain city names but not capital names. This deficiency will probably be fixed in some future
release.

5.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion changed, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
on existing tables.

You can

« Add columns,

« Remove columns,

« Add constraints,

- Remove constraints,
« Change default values,
« Rename columns,

« Rename tables.

All these actions are performed using tieTER TABLEcommand.

5.6.1. Adding a Column

To add a column, use this command:
ALTER TABLE products ADD COLUMN description text;

The new column will initially be filled with null values in the existing rows of the table.

You can also define a constraint on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ")

44

Chapter 5. Data Definition

A new column cannot have a not-null constraint since the column initially has to contain null values.
But you can add a not-null constraint later. Also, you cannot define a default value on a new column.
According to the SQL standard, this would have to fill the new columns in the existing rows with the
default value, which is not implemented yet. But you can adjust the column default later on.

5.6.2. Removing a Column

To remove a column, use this command:

ALTER TABLE products DROP COLUMN description;

5.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_ no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Oth-
erwise the system assigned a generated name, which you need to find out. The psql céenmand
tablename can be helpful here; other interfaces might also provide a way to inspect table details.
Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name$ikedon't forget that you'll need to double-
guote it to make it a valid identifier.)

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use

ALTER TABLE products ALTER COLUMN product no DROP NOT NULL;

(Recall that not-null constraints do not have names.)
5.6.5. Changing the Default

To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

45

Chapter 5. Data Definition

To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is equivalent to setting the default to null, at least in PostgreSQL. As a consequence, it is not an
error to drop a default where one hadn’t been defined, because the default is implicitly the null value.

5.6.6. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_ no TO product_number;

5.6.7. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.7. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to ugwiitjlegesmust be granted. (There
are also users that have the superuser privilege. Those users can always access any object.)

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATE TEMPORARMYEXECUTEUSAGE andALL PRIVILEGES. For complete informa-
tion on the different types of privileges supported by PostgreSQL, refer ®R#ANTreference page.
The following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

To assign privileges, theRANTcommand is used. So,jde is an existing user, angtcounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;
The user executing this command must be the owner of the table. To grant a privilege to a group, use
GRANT SELECT ON accounts TO GROUP staff;

The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:

46

Chapter 5. Data Definition
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right t&®P GRANTREVOKEetc.) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more naraeldemaswhich in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, fdtbmal andmyschema may

contain tables namenhytable . Unlike databases, schemas are not rigidly separated: a user may
access objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

- To allow many users to use one database without interfering with each other.
- To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a separate schema, use the comm@&RATE SCHEMAive the schema a name of your
choice. For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, wri@alified nameconsisting of the schema name and
table name separated by a dot:

schema. table
Actually, the even more general syntax

database .schema. table

47

Chapter 5. Data Definition

can be used too, but at present this is just for pro-forma compliance with the SQL standard; if you
write a database name it must be the same as the database you are connected to.

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (

%

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters.

To drop a schema if it's empty (all objects in it have been dropped), use
DROP SCHEMA myschema;

To drop a schema including all contained objects, use
DROP SCHEMA myschema CASCADE;

SeeSection 5.10or a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAchemaname AUTHORIZATION username ;

You can even omit the schema name, in which case the schema name will be the same as the user
name. Se&ection 5.8.6or how this can be useful.

Schema names beginning wiih_ are reserved for system purposes and may not be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into

applications anyway. Therefore tables are often referred tongalified nhameswhich consist of

just the table name. The system determines which table is meant by followeayeh pathwhich is

a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

48

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be createdCIREASE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit thesuser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.
See als@ection 9.13or other ways to access the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATORgChema. operator)

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

49

Chapter 5. Data Definition

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner
of the schema needs to grant th8AGEprivilege on the schema. To allow users to make use of the
objects in the schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow tE&REATRE
privilege on the schema needs to be granted. Note that by default, everyodBE@sEANdUSAGE
privileges on the schemumblic . This allows all users that are able to connect to a given database to
create objects in itsublic schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is
an identifier, in the second sense it is a reserved word, hence the different capitalization; recall the
guidelines fromSection 4.1.])

5.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database containgatalogy schema,
which contains the system tables and all the built-in data types, functions, and op@ratoatalog

is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searchetbeforesearching the path’s schemas. This ensures that built-in names will always be findable.
However, you may explicitly placpg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginningpgittwere reserved. This is no longer

true: you may create such a table name if you wish, in any non-system schema. However, it's best to
continue to avoid such names, to ensure that you won't suffer a conflict if some future version defines

a system table named the same as your table. (With the default search path, an unqualified reference to
your table name would be resolved as the system table instead.) System tables will continue to follow
the convention of having names beginning with , so that they will not conflict with unqualified
user-table names so long as users avoigtheprefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

- If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts witbuser , which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

- Toinstall shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow

50

Chapter 5. Data Definition

the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their path, as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consistsefname . tablename . This is how PostgreSQL

will effectively behave if you create a per-user schema for every user.

Also, there is no concept of gublic schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even removpjitie schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

+ Views
- Functions, operators, data types, domains
« Triggers and rewrite rules

Detailed information on these topics appearRant V.

5.10. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered irSection 5.4.5with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;
NOTICE: constraint $1 on table orders depends on table products

ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

51

Chapter 5. Data Definition

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check wbROP ... CASCADE will do, run
DROPwithout CASCADENd read th&NOTICEmessages.)

All drop commands in PostgreSQL support specifyixsCADEOf course, the nature of the possible
dependencies varies with the type of the object. You can also RESTRICTinstead 0fCASCADEO
get the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADHS required. No
database system actually implements it that way, but whether the default behavior is RESTRICTor
CASCAD®aries across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade.

52

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use thieSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products tabl€fapter 5

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese’);
INSERT INTO products VALUES (1, 'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

53

Chapter 6. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPY command. It is not
as flexible as the INSERT command, but is more efficient.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter Shat SQL does not, in general, provide a unique identifier for rows. Therefore

it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let's look at that command in detail: First is the key warBDATEfollowed by the table name. As

usual, the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can also refer to the old value. We also lefMaHEIRE

clause. If it is omitted, it means that all rows in the table are updated. If it is present, only those rows
that match the condition after teHERRre updated. Note that the equals sign ing&& clause is an
assignment while the one in tieHERElause is a comparison, but this does not create any ambiguity.

Of course, the condition does not have to be an equality test. Many other operators are available (see
Chapter 9. But the expression needs to evaluate to a Boolean result.

You can also update more than one column iv@DATEcommand by listing more than one assign-
ment in theSET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

54

Chapter 6. Data Manipulation

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we discussed that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar toWr®ATECcommand.
For instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

55

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is aglled;dn SQL
theSELECTcommand is used to specify queries. The general syntax &fEhECTcommand is

SELECT select_list FROMtable_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

The simplest kind of query has the form

SELECT * FROM tablel,;

Assuming that there is a table calledlel , this command would retrieve all rows and all columns

from tablel . (The method of retrieval depends on the client application. For example, the psql
program will display an ASClIl-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specificatmpeans all columns that

the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For examplablel has columns named b, andc (and

perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming thatt andc are of a numerical data type). S8ection 7.3or more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use S ECTcommand as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions

A table expressiogmomputes a table. The table expression contaifR@Mclause that is optionally
followed byWHEREGROUP BYandHAVINGclauses. Trivial table expressions simply refer to a table

on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optionaWHEREGROUP BYandHAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived irRB&tlause. All these transforma-

56

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The FROMClause

The FROMclause derives a table from one or more other tables given in a comma-separated table
reference list.

FROMtable_reference [, table_reference [, ...

A table reference may be a table name (possibly schema-qualified), or a derived table such as a
subquery, a table join, or complex combinations of these. If more than one table reference is listed in
theFROM:lause they are cross-joined (see below) to form the intermediate virtual table that may then
be subject to transformations by tHEREGROUP BYandHAVING clauses and is finally the result

of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the key word

ONLYprecedes the table name. However, the reference produces only the columns that appear in the
named table --- any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOINT2

For each combination of rows fromil andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inr2. If the tables have N and M rows respectively,
the joined table will have N * M rows.

FROMT1 CROSS JOINT2 is equivalent toFROMT1, T2. It is also equivalent t-ROMT1
INNER JOIN T2 ON TRUHESsee below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The wordsINNER andOUTERare optional in all formsINNER is the defaultLEFT, RIGHT, and
FULL imply an outer join.

Thejoin conditionis specified in thedNor USING clause, or implicitly by the wordNATURAL
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The ONclause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used inveHERElause. A pair of rows fronT1 and T2 match if theON
expression evaluates to true for them.

USINGis a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of@IN USING has one column for each of the equated

57

Chapter 7. Queries

pairs of input columns, followed by all of the other columns from each table. TUBISIG (a,

b, ¢) isequivalentt®N (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the
exception that ifoNis used there will be two columres b, andc in the result, whereas with
USINGthere will be only one of each.

Finally, NATURALis a shorthand form afSING. it forms aUSINGlist consisting of exactly those
column names that appear in both input tables. As WBING, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.

Also, for each row of T2 that does not satisfy the join condition with any row in T1, a

joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or bdthafidT2 may be joined tables.
Parentheses may be used aroo@tN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have talles

num | name

58

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
num | name | num | value
| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xxx

| yyy
| zzz

WWNNNPRP PP
O 0O O oo YL YO
T WErFEOwER O we

3
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- B TR Y
1] a | 1] xxx
3¢ I 31 vyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

_____ B B —
1] a | xxx
3lc | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

_____ B B —
1] a | xxx
31c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num;
num | name | num | value

w NP
O T o

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

_____ R S ——
1] a | xxx
21b I
3lc | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value
----- B TR Y

1] a | 1] xxx

Chapter 7. Queries

59

Chapter 7. Queries

3]c | 31wy
| | 5| zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON tl.num = t2.num;
num | name | num | value

1| a | 1| xxx
2|b I I
3]c | 31y
| | 5| zzz
(4 rows)

The join condition specified witbNcan also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;
num | name | num | value

----- R S
1| a | 1| xxx
2|b I I
3lc I |

(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in further processing. This is calledhde alias

To create a table alias, write
FROMtable_reference AS alias
or
FROMtable_reference alias

The ASkey word is noisealias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query -- it is no longer possible
to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard)
is that an implicit table reference is added to BROMclause, so the query is processed as if it were
written as

60

Chapter 7. Queries
SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquerySseton 7.2.1.8

Parentheses are used to resolve ambiguities. The following statement will assign thetaliii®
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my table) AS b ...

Another form of table aliasing also gives temporary names to the columns of the table:

FROMtable_reference [AS] alias (columnl [, column2 [, ..]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output af@IN clause, using any of these forms, the alias hides the
original names within th@OIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS ¢

is not valid: the table alias is not visible outside the alias

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parenthesesistiieg assigned a table
alias name. (Se$Bection 7.2.1.2 For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent #ROM tablel AS alias_name . More interesting cases, which can'’t
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subqueisROEhe
clause of a query. Columns returned by table functions may be includggl CT, JOIN, or WHERE
clauses in the same manner as a table, view, or subguery column.

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes
of the type.

61

Chapter 7. Queries

A table function may be aliased in ti&®OMclause, but it also may be left unaliased. If a function is
used in theeROMclause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS °’
SELECT * FROM foo WHERE fooid = $1;
" LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record . When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT *
FROM dblink('dbname=mydb’, 'select proname, prosrc from pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function executes a remote query (Sstrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, wisditould expand to.

7.2.2. The WHERE lause

The syntax of thavHERElause is
WHEREsearch_condition

wheresearch_condition is any value expression as definedSaction 4.2hat returns a value
of typeboolean .

After the processing of theROMclause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the resultis false or null) it is discarded. The search condition typically references
at least some column in the table generated irFftR@Mclause; this is not required, but otherwise the
WHERElause will be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of
an inner join in the WHERElause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

62

Chapter 7. Queries

and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMclause is
probably not as portable to other SQL database management systems. For outer joins there is no
choice in any case: they must be done in the FROMclause. An ONUSING clause of an outer join is
not equivalent to a WHEREondition, because it determines the addition of rows (for unmatched
input rows) as well as the removal of rows from the final result.

Here are some examplesWwHERElauses:

SELECT ... FROM fdt WHERE c¢1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE cl1 IN (SELECT ¢3 FROM t2 WHERE c2 = fdt.cl1 + 10)
SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROM t2 WHERE c2 = fdt.cl + 10) AND
SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in theROMlause. Rows that do not meet the search condition oftHERE

clause are eliminated frofdt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice aligi hisweferenced

in the subqueries. Qualifyingl asfdt.cl is only necessary i1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

7.2.3. The GROUP B¥wnd HAVING Clauses

After passing thevHEREilter, the derived input table may be subject to grouping, usingstReUP
BY clause, and elimination of group rows using th&VINGclause.

SELECT select_list
FROM ...
[WHERE ..]
GROUP BYgrouping_column_reference [, grouping_column_reference]e..

The GROUP BYlause is used to group together those rows in a table that share the same values in
all the columns listed. The order in which the columns are listed does not matter. The purpose is to
reduce each group of rows sharing common values into one group row that is representative of all
rows in the group. This is done to eliminate redundancy in the output and/or compute aggregates that
apply to these groups. For instance:

=> SELECT * FROM testl;

x|y
[R

63

Chapter 7. Queries

=> SELECT x FROM testl GROUP BY x;

(3 rows)

In the second query, we could not have writteBLECT * FROM testl GROUP BY x because
there is no single value for the colunynthat could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a known constant value per group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum
[S

a | 4
b|] 5
c | 2
(3 rows)

Heresum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be fouseation 9.15

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columnsoduct_id , p.name, andp.price must be in theGROUP B¥lause

since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price may be fully dependent on the product ID, so the additional groupings could
theoretically be unnecessary, but this is not implemented yet.) The calunits does not have to

be in theGROUP Blist since itis only used in an aggregate expresssam(...)), which represents

the sales of a product. For each product, the query returns a summary row about all sales of the
product.

In strict SQL,GROUP B¥an only group by columns of the source table but PostgreSQL extends this
to also allownGROUP BYo group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

64

Chapter 7. Queries

If a table has been grouped usinGBOUP BY¥lause, but then only certain groups are of interest, the
HAVINGclause can be used, much likeV@dERElause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ..] GROUP BY ... HAVING boolean_expression

Expressions in thBAVINGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
PR

al 4
b| 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’c

X | sum
PR S,

al 4
b| 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, tt@HEREIlause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), whileHA® INGclause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

7.3. Select Lists

As shown in the previous section, the table expression irsHiEECTcommand constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by telect list The select list determines whidolumnsof the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defieetion 4.2. For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM ...

65

Chapter 7. Queries

The columns names, b, andc are either the actual names of the columns of tables referenced in the
FROMlause, or the aliases given to them as explainékiction 7.2.1.2The name space available in
the select list is the same as in WeIERElause, unless grouping is used, in which case it is the same
as in theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbll.a, tbl2.a, tbll.o FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbhll.*, thl2.a FROM ...

(See alscsection 7.2.9

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of #ROMlause; they could be constant arithmetic expressions

as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified usiag, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMclause (see
Section 7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination
of duplicates. Th®ISTINCT key word is written directly after th6ELECTto enable this:

SELECT DISTINCT select_list

(Instead oDISTINCT the wordALL can be used to select the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

66

Chapter 7. Queries
SELECT DISTINCT ON (expression [, expression)| select_list

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving abI®EINCT filter. (DISTINCT ON
processing occurs aft@RDER Borting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious \GR@HP B¥Wnd
subqueries ifROMhe construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl andquery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3

which really says

(queryl UNION query2) UNION query3

UNIONeffectively appends the result gliery2 to the result ofjueryl (although there is no guar-
antee that this is the order in which the rows are actually returned). Furthermore, it eliminates all
duplicate rows, in the sense DfSTINCT, unlessUNION ALLis used.

INTERSECT returns all rows that are both in the resultaqpferyl and in the result ofjuery2 .
Duplicate rows are eliminated unle$§rERSECT ALLis used.

EXCEPTreturns all rows that are in the result gfieryl but not in the result ofjuery2 . (This
is sometimes called thdifferencebetween two queries.) Again, duplicates are eliminated unless
EXCEPT ALLis used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they both return the same number of columns, and that the
corresponding columns have compatible data types, as descriBedtion 10.5

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYlause specifies the sort order:

67

Chapter 7. Queries

SELECT select_list
FROMtable_expression
ORDER BYcolumnl [ASC | DESC] [, column2 [ASC | DESC] ..]

columnl , etc., refer to select list columns. These can be either the output name of a column (see
Section 7.3.2or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY ga;
SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:
SELECT a, b FROM tablel ORDER BY a + b;

References to column names in #ROMlause that are renamed in the select list are also allowed:
SELECT a AS b FROM tablel ORDER BY a;

But these extensions do not work in queries involvisiglON INTERSECT, or EXCEPT and are not
portable to other SQL databases.

Each column specification may be followed by an optioh&C or DESCto set the sort direction to
ascending or descendingSCorder is the default. Ascending order puts smaller values first, where
“smaller” is defined in terms of the operator. Similarly, descending order is determined withtthe
operator?!

If more than one sort column is specified, the later entries are used to sort rows that are equal under
the order imposed by the earlier sort columns.

7.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rowsLIMIT ALL is the same as omitting théMIT clause.

OFFSETsays to skip that many rows before beginning to return r@=ESET 0is the same as
omitting theOFFSETclause. If bottOFFSETandLIMIT appear, the®@FFSETrows are skipped before
starting to count theIMIT rows that are returned.

When usingLIMIT , it is important to use a®WRDER BYlause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specifi@RDER BY

1. Actually, PostgreSQL uses thiefault B-tree operator clager the column’s data type to determine the sort ordering for
ASCandDESC Conventionally, data types will be set up so that thand> operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

68

Chapter 7. Queries

The query optimizer takedMIT into account when generating a query plan, so you are very likely

to get different plans (yielding different row orders) depending on what you givelkoim and
OFFSET Thus, using differentIMIT /OFFSETvalues to select different subsets of a query resillt

give inconsistent resultsnless you enforce a predictable result ordering W#DER BYThis is not

a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unle©RDER BYs used to constrain the order.

69

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to Post-
greSQL using th€REATE TYPEommand.

Table 8-1shows all built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying(n) \varbit(n) \variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data

character varying(n) \varchar(n) \variable-length character string

character(n) char(n) fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int ,int4 signed four-byte integer

interval(p) time span

line infinite line in the plane (not fully
implemented)

Iseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric with selectable
precision

path open and closed geometric path
in the plane

point geometric point in the plane

polygon closed geometric path in the
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

70

Chapter 8. Data Types

Name Aliases Description

serial serial4 autoincrementing four-byte
integer

text \variable-length character string

time [(p)] [without time of day

time zone]

time [(p)] with time timetz time of day, including time zong

zone

timestamp [(p)] timestamp date and time

without time zone

timestamp [(
time zone]

p) 1 [with

timestamptz

date and time, including time
zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying

boolean , char , character varying
, humeric , decimal

interval
or without time zone).

, real , smallint

, Character

, varchar

, date , double precision

, integer

, time (with or without time zone), timestamp (with

137

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as open and closed paths, or have several possibilities for formats, such as the date and
time types. Some of the input and output functions are not invertible. That is, the result of an output
function may lose accuracy when compared to the original input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric
operators for some data types may silently cause underflow or overflow.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and fixed-precision decimal@ble 8-2lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range
smallint 2 bytes small-range integer |-32768 to +32767
integer 4 bytes usual choice for integel-2147483648 to
+2147483647
bigint 8 bytes large-range integer 9223372036854 7758()8
to
922337203685477580[7
decimal \variable user-specified precisiomo limit
exact
numeric \variable user-specified precisioTno limit
exact

71

Chapter 8. Data Types

Name Storage Size Description Range
real 4 bytes \variable-precision, 6 decimal digits
inexact precision
double precision 3 bytes \variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing integ@rto 2147483647
bigserial 8 bytes large autoincrementingl to
integer 922337203685477580[7

The syntax of constants for the numeric types is describ&eation 4.1.2The numeric types have a
full set of corresponding arithmetic operators and functions. Reféhtgpter or more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The typesmallint ,integer , andbigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Themallint type is generally only used if disk space is at a premium. Hitiet
type should only be used if theteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such suppiaiht acts the same asteger (but still

takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer typaseger (orint) andsmallint . The typebigint , and the
type nameint2 ,int4 , andint8 are extensions, which are shared with various other SQL database
systems.

Note: If you have a column of type smallint or bigint with an index, you may encounter prob-
lems getting the system to use that index. For instance, a clause of the form

.... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and Post-
greSQL currently cannot use an index when two different data types are involved. A workaround
is to single-quote the constant, thus:

.... WHERE smallint_column = ’42’

This will cause the system to delay type resolution and will assign the right type to the constant.

8.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where ex-
actness is required. However, themeric type is very slow compared to the floating-point types
described in the next section.

72

Chapter 8. Data Types

In what follows we use these terms: Thealeof a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. Theecisionof a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERICfrecision , scale)

The precision must be positive, the scale zero or positive. Alternatively,
NUMERICfrecision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereasieric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the
system will attempt to round the value. If the value cannot be rounded so as to satisfy the declared
limits, an error is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data typessal anddouble precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Man-
aging these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following
points:

- If you require exact storage and calculations (such as for monetary amounts), usenthie
type instead.

- If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality may or may not work as expected.

73

Chapter 8. Data Types

On most platforms, theeal type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. Thelouble precision type typically has a range of around 1E-307 to 1E+308 with

a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
may take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

PostgreSQL also supports the SQL-standard notafiosts andfloat(p) for specifying inexact
numeric types. Herep specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptgloat(l) tofloat(24) as selecting theeal type, whilefloat(25) tofloat(53) select
double precision . Values ofp outside the allowed range draw an erftmat with no precision
specified is taken to meaiouble precision

Note: Prior to PostgreSQL 7.4, the precision in float(p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it may be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data typeserial andbigserial are not true types, but merely a notational convenience for
setting up unique identifier columns (similar to theTO_INCREMENpProperty supported by some
other databases). In the current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCtablename _colname _seq;
CREATE TABLEtablename (
colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL

);

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator.MOT NULLconstraint is applied to ensure that a null value cannot be explicitly
inserted, either. In most cases you would also want to attagkiQUEor PRIMARY KEYconstraint

to prevent duplicate values from being inserted by accident, but this is not automatic.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE This is no longer automatic. If you wish
a serial column to be in a unique constraint or a primary key, it must now be specified, same as
with any other data type.

To insert the next value of the sequence intogbgal column, specify that theerial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in theNSERT statement, or through the use of hEFAULTkey word.

The type nameserial andserial4 are equivalent: both creaisteger columns. The type
namesbigserial andserial8 work just the same way, except that they crea@amt column.

74

Chapter 8. Data Types

bigserial should be used if you anticipate the use of more tham2ntifiers over the lifetime of
the table.

The sequence created forsarial column is automatically dropped when the owning column is
dropped, and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3.
Note that this automatic drop linkage will not occur for a sequence created by reloading a dump from

a pre-7.3 database; the dump file does not contain the information needed to establish the dependency
link.) Furthermore, this dependency between sequence and column is made only $eridhe

column itself; if any other columns reference the sequence (perhaps by manually calliegttiae

function), they will be broken if the sequence is removed. Usirsgraal column’s sequence in

such a fashion is considered bad form; if you wish to feed several columns from the same sequence
generator, create the sequence as an independent object.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precisionTabke 8-3 Input is
accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such &&1,000.00' . Output is generally in the latter form but depends on the
locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 4 bytes currency amount -21474836.48 to
+21474836.47

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character typebaracter varying(n) andcharacter(n), wheren

is a positive integer. Both of these types can store strings apctwaracters in length. An attempt to

store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of typeharacter will be space-padded; values of typearacter varying will

simply store the shorter string.

75

Chapter 8. Data Types

If one explicitly casts a value tcharacter varying(n) or character(n), then an over-length
value will be truncated tm characters without raising an error. (This too is required by the SQL
standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising
an error, in either explicit or implicit casting contexts.

The notationsvarchar(n) and char(n) are aliases forcharacter varying(n) and
character(n), respectivelycharacter without length specifier is equivalent tharacter(1) ;

if character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides thext type, which stores strings of any length. Although the
typetext is notin the SQL standard, several other SQL database management systems have it as
well.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case of
character plus the padding. Long strings are compressed by the system automatically, so the phys-
ical requirement on disk may be less. Long values are also stored in background tables so they do not
interfere with rapid access to the shorter column values. In any case, the longest possible character
string that can be stored is about 1 GB. (The maximum value that will be allowedifothe data

type declaration is less than that. It wouldn’t be very useful to change this because with multibyte
character encodings the number of characters and bytes can be quite different anyway. If you desire
to store long strings with no specific upper limit, us@ or character varying without a length
specifier, rather than making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from the increased
storage size when using the blank-padded type.

Refer toSection 4.1.2.%or information about the syntax of string literals, andXoapter Jor infor-
mation about available operators and functions.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; -- ad
a | char_length
______ S R —
ok | 4

CREATE TABLE test2 (b varchar(b));
INSERT INTO test2 VALUES ('ok’);
INSERT INTO test2 VALUES ('good);
INSERT INTO test2 VALUES (too long’);
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long’:varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length

ok | 2
good | 5
too | | 5

76

Chapter 8. Data Types

O Thechar_length function is discussed iBection 9.4

There are two other fixed-length character types in PostgreSQL, shotabie 8-5 Thename type
existsonly for storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constéaMEDATALENThe length is set at compile time (and

is therefore adjustable for special uses); the default maximum length may change in a future release.
The type'char" (note the quotes) is different froomar(1) in that it only uses one byte of storage.

It is internally used in the system catalogs as a poor-man’s enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-character internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

Thebytea data type allows storage of binary strings; $able 8-6

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 4 bytes plus the actual binary

string

\variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters
strings by two characteristics: First, binary strings specifically allow storing octets of value zero and
other “non-printable” octets (defined as octets outside the range 32 to 126). Second, operations on
binary strings process the actual bytes, whereas the encoding and processing of character strings
depends on locale settings.

When enteringhytea values, octets of certain valuesustbe escaped (but all octet valuesy be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, itis
converted into the three-digit octal number equivalent of its decimal octet value, and preceded by two
backslasheslable 8-7contains the characters which must be escaped, and gives the alternate escape
sequences where applicable.

Table 8-7.bytea Literal Escaped Octets

Decimal Octet Description Escaped Input [Example Output
Value Representation Representation
0 zero octet "\\000’ SELECT \00O
'\\000’::bytea;
39 single quote '\ or’\047’ SELECT
'\"::bytea;

77

Chapter 8. Data Types

Decimal Octet Description Escaped Input [Example Output
\Value Representation Representation
92 backslash RS or SELECT \
"\\134" "\W'::bytea;
0 to 31 and 127 to[‘non-printable” [\\ xxx (octal |SELECT 001
255 octets value) "\001'::bytea;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some
instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7was exactly one octet in length, even though the output representation of the zero octet
and backslash are more than one character.

The reason that you have to write so many backslashes, as sh@ahl&8-7 is that an input string

written as a string literal must pass through two parse phases in the PostgreSQL server. The first
backslash of each pair is interpreted as an escape character by the string-literal parser and is therefore
consumed, leaving the second backslash of the pair. The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash.
For example, a string literal passed to the servek@&l’ becomes001 after passing through

the string-literal parser. THe01 is then sent to theytea input function, where it is converted to a

single octet with a decimal value of 1. Note that the apostrophe character is not treated specially by
bytea , so it follows the normal rules for string literals. (See aBsxtion 4.1.2.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into

its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are rep-

resented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternative output representation. DetailsTalglér8-8

Table 8-8.bytea Output Escaped Octets

Decimal Octet Description Escaped Output [Example Output Result
Value Representation
92 backslash \\ SELECT \

'\\134"::bytea;

0to 31 and 127 to['non-printable” \ xxx (octal value) |SELECT \001
255 octets "\001'::bytea;
32t0 126 “printable” octets [client character seSELECT ~

representation [\\176’::bytea;

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms
of escaping and unescapihgtea strings. For example, you may also have to escape line feeds and
carriage returns if your interface automatically translates these.

The SQL standard defines a different binary string type, caledBor BINARY LARGE OBJECT
The input format is different comparedtiigtea , but the provided functions and operators are mostly
the same.

78

Chapter 8. Data Types

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, showabie 8-9

Table 8-9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p) 11 time 14 digits
without time

zone]

timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p) 1 with time, with time 14 digits

time zone zone

interval [12 bytes time intervals |[-178000000 (178000000 [1 microsecond
(p)] years years

date 4 bytes dates only 4713 BC 32767 AD 1 day

time [(p)] B bytes times ofday |00:00:00.00 [23:59:59.99 [1 microsecond
[without only

time zone |

time [(p) 1 [12 bytes times of day |00:00:00.00+1223:59:59.99-12/1 microsecond
with time only, with time

zone zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone . This was changed for SQL compliance.

time , timestamp , andinterval accept an optional precision valpewhich specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range gf is from 0 to 6 for theimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision may be less than 6. timestamp values are stored as
seconds before or after midnight 2000-01-01. Microsecond precision is achieved for dates within
a few years of 2000-01-01, but the precision degrades for dates further away. When timestamp
values are stored as eight-byte integers (a compile-time option), microsecond precision is avail-
able over the full range of values. However eight-byte integer timestamps have a more limited
range of dates than shown above: from 4713 BC up to 294276 AD.

For thetime types, the allowed range gfis from 0 to 6 when eight-byte integer storage is used, or
from 0 to 10 when floating-point storage is used.

The typetime with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combinatiae oftime |,
timestamp without time zone , and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.

79

Chapter 8. Data Types

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of month, day, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set thedatestyle ~ parameter tavDYto select month-day-year interpretati@iyto select
day-month-year interpretation, ¥MDto select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard require&pSee
pendix Bfor the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer toSection 4.1.2.4or more information. SQL requires the following syntax

type [(p)]’ value'’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specifiediftg , timestamp , andinterval types.

The allowed values are mentioned above. If no precision is specified in a constant specification, it
defaults to the precision of the literal value.

8.5.1.1. Dates
Table 8-10shows some possible inputs for tthete type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in angatestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 ilmMDYmode; August 1 irbMYmode

1/18/1999 January 18 iMDYmode; rejected in other modes

01/02/03 January 2, 2003 iMDYmode; February 1, 2003|in
DMYmode; February 3, 2001 vMDmode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 irYMDmode, else error

08-Jan-99 January 8, except error iviDmode

Jan-08-99 January 8, except error YMDmode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 lyear and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

80

Chapter 8. Data Types

8.5.1.2. Times

The time-of-day types aténe [(p)] without time zone andtime [(p)] with time
zone . Writing justtime is equivalent taime without time zone

Valid input for these types consists of a time of day followed by an optional time zone Té®ée
8-11andTable 8-12) If a time zone is specified in the input fome without time zone ,itis
silently ignored.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:.05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12

04:05:06.789-8

ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by name
Table 8-12. Time Zone Input

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC
z Short form ofzulu

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. Thus

1999-01-08 04:05:06
and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

81

Chapter 8. Data Types

For timestamp [without time zone] , any explicit time zone specified in the input is silently
ignored. That is, the resulting date/time value is derived from the explicit date/time fields in the input
value, and is not adjusted for time zone.

Fortimestamp with time zone , the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset forithezone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the
currenttimezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changénezone or use theAT TIME ZONEconstruct (se&ection 9.8.3

Conversions betweenimestamp without time zone and timestamp with time zone
normally assume that thémestamp without time zone value should be taken or given as
timezone local time. A different zone reference can be specified for the conversion ASINGME
ZONE

8.5.1.4. Intervals

interval values can be written with the following syntax:
[@] quantity unit [quantity unit ..] [direction]

Where:quantity is a number (possibly signed)nit is second , minute , hour , day, week,
month, year , decade, century , millennium , or abbreviations or plurals of these units;
direction can beago or empty. The at sign@) is optional noise. The amounts of different units
are implicitly added up with appropriate sigh accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example;1 12:59:10’ is read the same &b day 12 hours 59 min 10 sec’

The optional precisiop should be between 0 and 6, and defaults to the precision of the input literal.

8.5.1.5. Special Values

The following SQL-compatible functions can be used as date or time values for the
corresponding data typeCURRENT_DATECURRENT_TIME CURRENT_TIMESTAMAR.OCALTIME
LOCALTIMESTAMP The latter four accept an optional precision specification. (See Sdsion
9.8.4)

PostgreSQL also supports several special date/time input values for convenience, as sraivie in

8-13 The valuesnfinity and-infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read. All of these values are treated as normal constants and need to
be written in single quotes.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date , timestamp 1970-01-01 00:(
infinity timestamp later than all oth
-infinity timestamp earlier than all o

82

Chapter 8. Data Types

Input String \Valid Types Description

now date , time , timestamp current transacti
today date , timestamp midnight today
tomorrow date , timestamp midnight tomorr
yesterday date , timestamp midnight yesterc
allballs time 00:00:00.00 UT

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),

traditional POSTGRES, and German, using the comn&#il datestyle

. The default is the ISO

format. (The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output
format is a historical accidentTable 8-14shows examples of each output style. The output of the
date andtime types is of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

T

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style Wed Dec 17 07:37:16 1997 PS
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (Seetion 8.5.%or how this setting also affects inter-
pretation of input valuesJable 8-15shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day /month /year 17/12/1997 15:37:16.00 CET
SQL, MDY month /day /year 12/17/1997 07:37:16.00 PST
Postgres, DMY day /month /year Wed 17 Dec 07:37:16 1997 PS

T

interval output looks like the input format, except that units ldemtury or wek are converted to
years and days and thado is converted to an appropriate sign. In ISO mode the output looks like

[quantity unit [..

The date/time styles can be selected by the user usingSHIe datestyle
datestyle parameter in thepostgresgl.conf

111 days] [hours : minutes :sekunden]

environment variable on the server or client. The formatting funatiobhar (seeSection 9.7 is
also available as a more flexible way to format the date/time output.

83

command, the
configuration file, or thePGDATESTYLE

Chapter 8. Data Types

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide
output time-zone support, and these systems usually contain information for only the time period
1902 through 2038 (corresponding to the full range of conventional Unix system timejtamp

with time zone andtime with time zone will use time zone information only within that year
range, and assume that times outside that range are in UTC. But since time zone support is derived
from the underlying operating system time-zone capabilities, it can handle daylight-saving time and
other special behavior.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

- Although thedate type does not have an associated time zoneijritee type can. Time zones in
the real world can have no meaning unless associated with a date as well as a time since the offset
may vary through the year with daylight-saving time boundaries.

- The default time zone is specified as a constant numeric offset from UTC. It is not possible to adapt
to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommemat using the typeime with time zone (though it is
supported by PostgreSQL for legacy applications and for compatibility with other SQL implementa-
tions). PostgreSQL assumes your local time zone for any type containing only date or time.

All dates and times are stored internally in UTC. Times are converted to local time on the database
server before being sent to the client, hence by default are in the server time zone.

There are several ways to select the time zone used by the server:

- TheTz environment variable on the server host is used by the server as the default time zone, if no
other is specified.

« Thetimezone configuration parameter can be set in thegidetgresgl.conf

- The PGTzenvironment variable, if set at the client, is used by libpg applications to s&&Ia
TIME ZONEcommand to the server upon connection.

« The SQL comman8ET TIME ZONEsets the time zone for the session.

Note: If an invalid time zone is specified, the time zone becomes UTC (on most systems anyway).

Refer toAppendix Bfor a list of available time zones.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

84

Chapter 8. Data Types

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL typelean . boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
v
‘true’
'
ves’
L

For the “false” state, the following values can be used:

FALSE
)f!
‘false’
"

'no’
0

Using the key word¥RUEandFALSEis preferred (and SQL-compliant).
Example 8-2. Using theboolean type
CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES (TRUE, ’'sic est);

INSERT INTO testl VALUES (FALSE, 'non est);
SELECT * FROM testl,

a | b
R S —

t | sic est

f | non est

SELECT * FROM testl WHERE a;
a | b
JE S —

t | sic est

Example 8-Zhows thaboolean values are output using the letterandf .

Tip: Values of the boolean
AS integer)
boolval

type cannot be cast directly to other types (e.g., CAST (boolval

does not work). This can be accomplished using the CASEexpression: CASE WHEN

THEN ‘value if true’ ELSE 'value if false’ END . See also Section 9.12.

boolean uses 1 byte of storage.

85

Chapter 8. Data Types

8.7. Geometric Types

Geometric data types represent two-dimensional spatial objedite 8-16hows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-16. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on the plane (x,y)

line 32 bytes Infinite line (not fully |((x1,y1),(x2,y2))
implemented)

Iseg 32 bytes Finite line segment |((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to ((x1,y1),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center and

radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explaiSedtion 9.9

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values pbiype
are specified using the following syntax:

wherex andy are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segmentsifeg) are represented by pairs of points. Values of tigeg are specified using the
following syntax:

(C xx, y1),(x2,vy2))
(xt,yl),(x2, y2)
x1, yl X2 , y2

where(x1, y1) and(x2, y2) are the end points of the line segment.

86

Chapter 8. Data Types

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Valueshoktype
specified using the following syntax:

((Cxx,y1),(x2,vy2))
(xt, y1),(x2,y2)
x1, y1 X2, y2

where(x1, y1) and(x2, y2) are the opposite corners of the box.

Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and upper
right corners are determined from the input and stored corners.

8.7.4. Paths

Paths are represented by connected sets of points. Paths ogerba/here the first and last points

in the set are not connected, acldsed where the first and last point are connected. The functions
popen(p) andpclose(p) are supplied to force a path to be open or closed, and the functions
isopen(p) andisclosed(p) are supplied to test for either type in an expression.

Values of typepath are specified using the following syntax:

((x1, y1), .., xn , yn))
[C x1, yl), ... (xn ., yn)]
(xx, y1), .., (Xn , yn)
(x1, y1 , e Xn , yn)
x1 , vyl s e Xn , yn

where the points are the end points of the line segments comprising the path. Square bijagkets (
indicate an open path, while parenthegg9 {ndicate a closed path.

Paths are output using the first syntax.

8.7.5. Polygons

Polygons are represented by sets of points. Polygons should probably be considered equivalent to
closed paths, but are stored differently and have their own set of support routines.

Values of typepolygon are specified using the following syntax:

(C x1, y1), ... (xn ., yn))
(xx, y1), .., (Xn , yn)
(x1, y1 , e Xn , yn)

x1 , vyl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

87

Chapter 8. Data Types

8.7.6. Circles

Circles are represented by a center point and a radius. Values dfitylee are specified using the
following syntax:

<(xX,vy), r >
(Cx,vy), r)
(x,y),r
X,y , I

where(x, y) is the center and is the radius of the circle.

Circles are output using the first syntax.

8.8. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, shdahlén8-17 It is
preferable to use these types over plain text types, because these types offer input error checking and
several specialized operators and functions.

Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 or IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sortingnet orcidr data types, IPv4 addresses will always sort before IPv6 addresses, includ-
ing IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff::10.4.3.2.

8.8.1. inet

Theinet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnetitisin, all

in one field. The subnet identity is represented by stating how many bits of the host address represent
the network address (the “netmask”). If the netmask is 32 and the address is IPv4, then the value does
not indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits will specify
a unique host address. Note that if you want to accept networks only, you should e thigype

rather tharinet .

The input format for this type iaddress/y =~ whereaddress is an IPv4 or IPv6 address agdis
the number of bits in the netmask. If the part is left off, then the netmask is 32 for IPv4 and 128
for IPv6, and the value represents just a single host. On displayy thgortion is suppressed if the
netmask specifies a single host.

8.8.2. cidr

Thecidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networksldess/ly where
address is the network represented as an IPv4 or IPv6 addressy asdhe number of bits in the
netmask. Ify is omitted, it is calculated using assumptions from the older classful network numbering

88

Chapter 8. Data Types

system, except that it will be at least large enough to include all of the octets written in the input. It is
an error to specify a network address that has bits set to the right of the specified netmask.

Table 8-18shows some examples.

Table 8-18.cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81ff.fe22:d1200 P& f8:3:ba:2e0:81ff.fe22:d120APAf8:3:ba:2e0:81ff:fe22:d1f1
::ffff:1.2.3.0/120 -:ffff:1.2.3.0/120 offff:1.2.3/120
::ffff:1.2.3.0/128 -offff:1.2.3.0/128 :offff:1.2.3.0/128

8.8.3. inet vs. cidr

The essential difference betweieat andcidr data types is thabet accepts values with nonzero
bits to the right of the netmask, whereddr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host , text , and
abbrev .

8.8.4. macaddr

Themacaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

'08002b:010203’
'08002b-010203’
'0800.2b01.0203’
'08-00-2b-01-02-03'
'08:00:2h:01:02:03’

89

Chapter 8. Data Types

which would all specify the same address. Upper and lower case is accepted for the thigitsgh
f. Output is always in the last of the shown forms.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

8.9. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bit typesbit(n) andbit varying(n) , wheren is a positive integer.

bit type data must match the lengthexactly; it is an error to attempt to store shorter or longer bit
strings.bit varying data is of variable length up to the maximum lengtHonger strings will be
rejected. Writinghit without a length is equivalent tot(1) , whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
to bit varying(n), it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, bit data was always silently truncated or zero-padded on the
right, with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 4.1.2.2or information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; €bapter 9

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101’, B’00’);

INSERT INTO test VALUES (B’'10’, B'101’);

ERROR: bit string length 2 does not match type bit(3)
INSERT INTO test VALUES (B’10:bit(3), B'101");
SELECT * FROM test;

a | b
_____ o
101 | 00
100 | 101
8.10. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in type or user-defined type can be created.

90

Chapter 8. Data Types

8.10.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brggkets the data type name of
the array elements. The above command will create a table nsathetihp with a column of type
text (name), a one-dimensional array of tyfseger (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional arragxof (schedule), which represents
the employee’s weekly schedule.

The syntax foICREATE TABLRllows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
);
However, the current implementation does not enforce the array size limits --- the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizEREATE TABLHS simply
documentation, it does not affect runtime behavior.

An alternative, SQL99-standard syntax may be used for one-dimensional aagyisy quarter
could have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL
does not enforce the size restriction.

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You may put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

{ wvall delim val2 delim o ¥

wheredelim is the delimiter character for the type, as recorded ipgtdype entry. (For all built-in
types, this is the comma character.) Eachval is either a constant of the array element type, or a
subarray. An example of an array constant is

'{{1,2,3},{4,5,6},{7,8,9}}

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

91

Chapter 8. Data Types

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.4The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show som®&SERT statements.

INSERT INTO sal_emp
VALUES (BIll’,
'{10000, 10000, 10000, 10000},
{{"'meeting", "lunch"}, {}});

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000},
{"talk", "consult"}, {"meeting"}});

A limitation of the present array implementation is that individual elements of an array cannot be

SQL null values. The entire array can be set to null, but you can’t have an array with some elements
null and some not.

This can lead to surprising results. For example, the result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
name | pay_by_quarter [schedule

+
1

Bill | {10000,10000,10000,10000} | {{meeting}{"}}
Carol | {20000,25000,25000,25000} | {{talk},{meeting}}
(2 rows)

Because th@2][2] element okchedule is missing in each of thiNSERT statements, thg][2]
element is discarded.

Note: Fixing this is on the to-do list.

The ARRAYexpression syntax may also be used:

INSERT INTO sal_emp
VALUES (Bill’,
ARRAY[10000, 10000, 10000, 10000],
ARRAY[['meeting’, ’lunch’], [","1D;

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY(['talk’, 'consult’], ['meeting’, "]);
SELECT * FROM sal_emp;
name | pay_by_quarter | schedule
+ +
Bill | {10000,10000,10000,10000} | {{meeting,lunch}{","}}
Carol | {20000,25000,25000,25000} | {{talk,consult},{meeting,"}}
(2 rows)

Note that with this syntax, multidimensional arrays must have matching extents for each dimension.

A mismatch causes an error report, rather than silently discarding values as in the previous case. For
example:

92

Chapter 8. Data Types

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY[['talk’, 'consult’], ['meeting’]]);
ERROR: multidimensional arrays must have array expressions with matching dimensions

Also notice that the array elements are ordinary SQL constants or expressions; for instance, string
literals are single quoted, instead of double quoted as they would be in an array literalRRAg
expression syntax is discussed in more deta8aation 4.2.10

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an arrayedéments starts withrray[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound : upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill’;

schedule

{{meeting},{""}}
(1 row)

We could also have written
SELECT schedule[1:2][1] FROM sal_emp WHERE name = 'Bill’;

with the same result. An array subscripting operation is always taken to represent an array slice if
any of the subscripts are written in the fofower : upper . A lower bound of 1 is assumed for any
subscript where only one value is specified, as in this example:

93

Chapter 8. Data Types

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill’;
schedule

{{meeting,lunch},{"",""}}
(1 row)

The current dimensions of any array value can be retrieved witarthg dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

2]
(1 row)

array_dims produces aext result, which is convenient for people to read but perhaps not so
convenient for programs. Dimensions can also be retrievedanitly_upper andarray_lower
which return the upper and lower bound of a specified array dimension, respectively.

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol’;

array_upper

8.10.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by quarter = '{25000,25000,27000,27000}
WHERE name = 'Carol’;

or using theARRAYexpression syntax:

UPDATE sal_emp SET pay_by quarter = ARRAY[25000,25000,27000,27000]
WHERE name = 'Carol’;

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by quarter[1:2] = '{27000,27000}
WHERE name = 'Carol’;

A stored array value can be enlarged by assigning to an element adjacent to those already present,
or by assigning to a slice that is adjacent to or overlaps the data already present. For example, if
arraymyarray currently has 4 elements, it will have five elements after an update that assigns to

94

Chapter 8. Data Types

myarray[5] . Currently, enlargement in this fashion is only allowed for one-dimensional arrays, not
multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign tomyarray[-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation opgrator,

SELECT ARRAY[1,2] || ARRAYI[3,4];
?column?

1234
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?column?

{{5.6},{1.2}.{3.4}}
1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a
one-dimensional array. It also accepts tWalimensional arrays, or ai-dimensional and ah+1-
dimensional array.

When a single element is pushed on to the beginning of a one-dimensional array, the result is an
array with a lower bound subscript equal to the right-hand operand’s lower bound subscript, minus
one. When a single element is pushed on to the end of a one-dimensional array, the result is an array
retaining the lower bound of the left-hand operand. For example:

SELECT array_dims(1 || ARRAY[2,3]);
array_dims

SELECT array_dims(ARRAY[1,2] || 3);
array_dims

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAYI[5,6],[7,8],[9.,0]]);
array_dims

[1:5][1:2]

95

Chapter 8. Data Types

1 row)

When anN-dimensional array is pushed on to the beginning or end &f-elrdimensional array, the
result is analogous to the element-array case above. Ratimensional sub-array is essentially an
element of theN+1-dimensional array’s outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY([[3,4],[5.6]]);
array_dims

[0:2][1:2]
(2 row)

An array can also be constructed by using the functiamay prepend , array_append ,

or array_cat . The first two only support one-dimensional arrays, buahy cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, the functions are primarily for use in implementing the
concatenation operator. However, they may be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

SELECT array_append(ARRAY[1,2], 3);
array_append

SELECT array_cat(ARRAY[L1,2], ARRAYI[3,4]);
array_cat

1234
(1 row)

SELECT array_cat(ARRAY([[1,2],[3,4]], ARRAY/[5,6]);
array_cat

{{1.2},{3,4}.{5,6}}
1 row)

SELECT array_cat(ARRAYI[5,6], ARRAYI[1,2],[3,4]]);
array_cat

{{5.6}.{1,2}.{3.4}}

96

Chapter 8. Data Types

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand,
if you know the size of the array. For example:

SELECT * FROM sal_ emp WHERE pay_by quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] 10000 OR
pay_by_quarter[4] 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is describe>ction 9.17The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly bracgésand}) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comntmi can be something else:

it is determined by theypdelim setting for the array’s element type. (Among the standard data
types provided in the PostgreSQL distribution, tyjae uses a semicolon | but all the others use
comma.) In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of
curly braces, and delimiters must be written between adjacent curly-braced entities of the same level.
You may write whitespace before a left brace, after a right brace, or before any individual item string.
Whitespace after an item is not ignored, however: after skipping leading whitespace, everything up to
the next right brace or delimiter is taken as the item value.

As shown previously, when writing an array value you may write double quotes around any individual
array element. Yomustdo so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or whatever the delimiter character is), double
guotes, backslashes, or leading white space must be double-quoted. To put a double quote or backslash
in a quoted array element value, precede it with a backslash. Alternatively, you can use backslash-
escaping to protect all data characters that would otherwise be taken as array syntax or ignorable
white space.

The array output routine will put double quotes around element values if they are empty strings

or contain curly braces, delimiter characters, double quotes, backslashes, or white space. Double
quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes. (This is a change in behavior from pre-7.2
PostgreSQL releases.)

97

Chapter 8. Data Types

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES ({"W\W\","\"});

The string-literal processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\","\""} . In turn, the strings fed to the text data type’s input routine
become\ and" respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.)

Tip: The ARRAYconstructor syntax is often easier to work with than the array-literal syntax when
writing array values in SQL commands. In ARRAY individual element values are written the same
way they would be written when not members of an array.

8.11. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Also, an OID system column is added to user-created tables (WM@$OUT OIDSs specified at

table creation time). Typeid represents an object identifier. There are also several alias types for
oid : regproc , regprocedure , regoper , regoperator , regclass , andregtype . Table 8-19
shows an overview.

Theoid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output rou-
tines. These routines are able to accept and display symbolic names for system objects, rather than
the raw numeric value that typsid would use. The alias types allow simplified lookup of OID
values for objects: for example, one may writytable’::regclass to get the OID of table

mytable , rather tharSELECT oid FROM pg_class WHERE relname = 'mytable’ . (In reality,

a much more complicateBELECTwould be needed to deal with selecting the right OID when there

are multiple tables namedytable in different schemas.)

Table 8-19. Object Identifier Types

Name References Description \Value Example
oid any numeric object identifie564182
regproc pg_proc function name sum
regprocedure pg_proc function with argumentisum(int4)

types
regoper pg_operator operator name +

98

Chapter 8. Data Types

Name References Description \Value Example

regoperator pg_operator operator with argument(integer,integer)
types or -(NONE,integer)

regclass pg_class relation name pg_type

regtype pg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc andregoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most usegprocedure or regoperator iS more appropriate. For
regoperator , unary operators are identified by writingpNEor the unused operand.

Another identifier type used by the systenxii$, or transaction (abbreviated xact) identifier. This is
the data type of the system columusin andxmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systemdisl , or command identifier. This is the data type of the
system columnsmin andcmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemtis , or tuple identifier (row identifier). This is the data
type of the system columetid . A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explaine@gection 5.2

8.12. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-typesA pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type.Table 8-2dists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

anyarray Indicates that a function accepts any array data
type (se€Section 33.2.b

anyelement Indicates that a function accepts any data type
(seeSection 33.2.p

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler /A procedural language call handler is declared to
returnlanguage_handler

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to retutrigger.

99

Chapter 8. Data Types

Name Description

void Indicates that a function returns no value.

opaque I/An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return
any of these pseudo data types. It is up to the function author to ensure that the function will behave
safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implemen-
tation languages. At present the procedural languages all forbid use of a pseudo-type as argument
type, and allow onlywoid andrecord as a result type (plusigger when the function is used as a
trigger). Some also support polymorphic functions using the tgpgsray andanyelement .

Theinternal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
returninternal unless it has at least ofgernal argument.

100

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as describ@aiinV. The psql commandsf and
\do can be used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators and
some explicitly marked functions, are not specified by the SQL standard. Some of the extended func-
tionality is present in other SQL database management systems, and in many cases this functionality
is compatible and consistent between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operatoraNDandORare commutative, that is, you can switch the left and right operand without
affecting the result. But se8ection 4.2.1%or more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, showalihe 9-1

Table 9-1. Comparison Operators

101

Chapter 9. Functions and Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<> o0rl= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of typgean ; expressions lika < 2 < 3 are not
valid (because there is nooperator to compare a Boolean value widh

In addition to the comparison operators, the speRfIWEENONSstruct is available.
a BETWEENx ANDYy
is equivalent to
a >= x ANDa <=y
Similarly,
a NOT BETWEEM ANDy
is equivalent to
a<x ORa >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do notwrite expression = NULLbecause&lULLis not “equal to”’NULL (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Some applications may (incorrectly) require thakpression = NULL returns true if
expression evaluates to the null value. To support these applications, the run-time option
transform_null_equals can be turned on (e.gSET transform_null_equals TO ON;).
PostgreSQL will then convert = NULL clauses tox IS NULL . This was the default behavior in
releases 6.5 through 7.1.

102

Chapter 9. Functions and Operators

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar tt6 NULL in that they will always return true or false, never a null value, even
when the operand is null. A null input is treated as the logical value “unknown”.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 9-2shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 -3 -1

* multiplication 2 * 3

/ division (integer divisiod / 2 2
truncates results)

% modulo (remainder) 5 % 4 1

N exponentiation 2.0 » 3.0 8

|/ square root |/ 25.0 5

[N/ cube root ||/ 27.0 3

! factorial 5 | 120

I factorial (prefix Il5 120
operator)

@ absolute value @ -5.0 5

& bitwise AND 91 & 15 11

| bitwise OR 32 | 3 35

bitwise XOR 17 # 5 20

~ bitwise NOT ~1 -2

<< bitwise shift left 1 << 4 16

>> bitwise shift right 8 >> 2 2

The bitwise operators are also available for the bit string tytesandbit varying , as shown in
Table 9-3 Bit string operands of,, | , and# must be of equal length. When bit shifting, the original
length of the string is preserved, as shown in the table.

Table 9-3. Bit String Bitwise Operators

103

Chapter 9. Functions and Operators

Example Result
B’10001' & B’01101 00001
B'10001’ | B'01101’ 11101
B'10001" # B’01101 11110
~ B’10001 01110
B’10001" << 3 01000
B’10001" >> 2 00100

Table 9-4shows the available mathematical functions. In the talpléndicatesdouble precision

Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases may therefore vary depending on the host system.

Table 9-4. Mathematical Functions

Function Return Type Description Example Result

abs () (same ax) absolute value [abs(-17.4) 17.4

cbrt (dp) dp cube root cbrt(27.0) 3

ceil (dp or (same as input) |smallest integer nadeil(-42.8) -42

numeric) less than argument

degrees (dp) dp radians to degreesdegrees(0.5) 28.6478897565412

exp(dp or (same as input) |exponential exp(1.0) 2.71828182845905
numeric)
floor (dp or (same as input) |[largest integer notfloor(-42.8) -43
numeric) greater than
argument
In (dp or (same as input) |natural logarithm |In(2.0) 0.693147180559945
numeric)
log (dp or (same as input) |base 10 logarithm|log(100.0) 2
numeric)
log (b numeric , |numeric logarithm to basé |og(2.0, 64.0) 6.0000000000
X numeric)
mod(y, X) (same as argumemtemainder ofy /x |mod(9,4) 1
types)
pi () dp “7" constant pi() 3.14159265358979
pow(a dp, b dp) (dp a raised to the pow(9.0, 3.0) 729
power ofb
pow(a numeric , [numeric a raised to the pow(9.0, 3.0) 729
b numeric) power ofb
radians (dp) dp degrees to radiansradians(45.0) 0.785398163397444
random () dp random value random()

between 0.0 and 1.0

104

Chapter 9. Functions and Operators

Function Return Type Description Example Result

round (dp or (same as input) round to nearest [round(42.4) 42

numeric) integer

round (Vv numeric , [numeric round tos decimalround(42.4382, 42.44

s integer) places 2)

setseed (dp) int32 set seed for setseed(0.54823) (1177314959
subsequent
random() calls

sign (dp or (same as input) [sign of the sign(-8.4) -1

numeric) argument (-1, 0, +1)

sqrt (dp or (same as input) [square root sqrt(2.0) 1.4142135623731

numeric)

trunc (dp or (same as input) [truncate toward [trunc(42.8) 42

numeric) zero

trunc (Vv numeric , [numeric truncate tcs trunc(42.4382, 42.43

s integer) decimal places)

Finally, Table 9-5shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of tygeuble precision

Table 9-5. Trigonometric Functions

Function Description

acos (X) inverse cosine

asin (X) inverse sine

atan (X) inverse tangent
atan2 (X, Yy) inverse tangent of/ y
cos (X) cosine

cot (X) cotangent

sin (x) sine

tan (X) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typesaracter , character varying , andtext . Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using theracter type. Generally, the functions described

here also work on data of hon-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afabie 9-6 These functions are also implemented
using the regular syntax for function invocation. (Jeble 9-7)

Table 9-6. SQL String Functions and Operators

105

Chapter 9. Functions and Operators

Function Return Type Description Example Result
string I text String 'Post’ || PostgreSQL
string concatenation 'greSQL’
bit_length (string [integer Number of bits in |pit_length(jose’) 32
string
char_length (stringint¢ger Number of char_length(jose’) |4
or characters in string
character_length string)
convert (string text Change encodinglconvert('PostgreSQLPostgreSQL’ in
using using specified |using Unicode (UTF-8)
conversion_name conversion hame. iso_8859_1 to_utf_#@ncoding

Conversions can he
defined byCREATE
CONVERSIONAIso
there are some
pre-defined
conversion names|
SeeTable 9-8for
available
conversion names|

lower (string) fext Convert string to lower(TOM’) tom
lower case
octet_length (strinimteger Number of bytes irpctet_length(’jose’) |4
string
overlay (string text Replace substringoverlay(Txxxxas’ [Thomas
placing string placing 'hom’
from integer from 2 for 4)
[for integer 1)
position (substringinteger Location of position('om’ 3
in string) specified substringn 'Thomas’)
substring (string ftext Extract substring substring('Thomas' hom
[from integer] from 2 for 3)
[for integer])
substring (string ftext Extract substring [substring('Thomas' |mas
from pattern) matching POSIX from '..$)
regular expression
substring (string ftext Extract substring substring(Thomas’ joma
from pattern matching SQL from
for escape) regular expression%#"o_a#"_’
for '#)
trim ([leading text Remove the trim(both "X’ Tom
| trailing | longest string from *XxTomxx’)
both] containing only the
[characters] characters (a
from string) space by default)
from the
start/end/both ends
of thestring

106

Chapter 9. Functions and Operators

Function Return Type Description Example Result
upper (string) fext Convert string to upper(tom’) TOM
upper case

Additional string manipulation functions are available and are listéthlsie 9-7 Some of them are
used internally to implement the SQL-standard string functions listddlite 9-6

Table 9-7. Other String Functions

Function Return Type Description Example Result
ascii (text) integer IASCII code of the fascii(’x’) 120
first character of the
argument
btrim (string text Remove the btrim('xyxtrimyyx’, [trim
text longest string 'Xy’)
characters consisting only of
text) characters in
characters

from the start and
end ofstring

chr (integer) text Character with thelchr(65) A
given ASCII code

convert (string text Convert string to |convert(text_in_unicode
text dest_encoding [text_in_unicode’, [represented in ISC
[src_encoding The original "UNICODE’, 8859-1 encoding
name, | encoding is 'LATIN1")

dest_encoding specified by

name) src_encoding

If
src_encoding
is omitted, database

encoding is

assumed.
decode (string bytea Decode binary datecode('MTIzAAE="{123\000\001
text , type from string 'base64’)
text) previously encoded

with encode .

Parameter type is
same as irncode .

encode (data text Encode binary datncode(MTIZAAE=
bytea , type to ASCll-only '123\\000\001",
text) representation. [base64’)

Supported types

are:base64 , hex,

escape .

107

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

initcap

(text)

text

Convert first letter
of each word
(whitespace-

separated) to uppe

case

initcap(’hi
thomas’)

=

Hi Thomas

length ('string)

integer

Number of
characters in string

length(’jose’)
J

Ipad (string
text ,
integer [,
text])

length

fill

text

Fill up the
string to length
length by
prepending the
characterdill (a
space by default).
thestring is
already longer thal
length thenitis
truncated (on the
right).

Ipad(’hi’, 5,
'Xy')

=

=

xyxhi

Itrim (string
text ,
characters
text)

text

Remove the
longest string
containing only
characters from
characters
from the start of th
string.

[trim('zzzytrim’,
lxyzl)

trim

md5(string
text)

text

Calculates the
MD5 hash of given
string, returning th
result in
hexadecimal.

md5('abc’)

900150983cd24fb0
06963f7d28e17f72

pg_client_encoding

ngne

Current client
encoding name

pg_client_encoding(

BQL_ASCII

quote_ident
text)

('string

text

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or woul
be case-folded).
Embedded quotes
are properly

quote_ident('’Foo’)

doubled.

"Foo"

108

Chapter 9. Functions and Operators

Function Return Type Description Example Result
quote_literal (stripext Return the given quote_literal('O"Reilly’
text) string suitably 'OV'Reilly’)

quoted to be used
as a string literal in
an SQL statement
string. Embedded

quotes and

backslashes are

properly doubled.
repeat (text |, text Repeat text a repeat(’Pg’, PgPgPgPg
integer) number of times 4)
replace (string text Replace all replace(abXXefabXXef
text , from occurrences in [abcdefabcdef’,
text , to text) string of 'cd’, 'XX)

substringfrom
with substringto .

rpad (string text Fill up the rpad(’hi’, 5, hixyx
text , length string to length xy’)
integer [, fill length by
text 1) appending the
characterdill (a

space by default). If
thestring is
already longer thal
length thenitis

=

truncated.
rtrim (string text Remove the rtrim(trimxxxx’, trim
text, longest string 'X")
characters containing only
text) characters from

characters

from the end of the

string.
split_part (string ftext Splitstring on split_part(def
text , delimiter delimiter and [abc~-@~def~-@~ghil,
text , field return the given [~@~', 2)
integer) field (counting from

one)
strpos (string , fext Location of strpos(high’, 2
substring) specified substringig’)

(same as

position(substring
in string), but
note the reversed
argument order)

109

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substr (string , fext Extract substring [substr(alphabet’, [ph
from [, (same as 3, 2)
count) substring(string

from from for

count))
to_ascii (text [, text Converttextto to_ascii(Karel’) Karel
encoding) ASCII from other

encoding
to_hex (number fext Convertnumber toto_hex(2147483647)rffffftf
integer or its equivalent
bigint) hexadecimal

representation

text Any character in [translate('12345’, [a23x5

translate ('string string that '14', ax’)
text , from matches a character
text , to text) in thefrom setis

replaced by the

corresponding

character in théo

set.
Notes:a. Theto_ascii function supports conversion frobATIN1 , LATIN2 , andWIN1250 only.

Table 9-8. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf 8 SQL_ASCII UNICODE
big5_to_euc_tw BIG5 EUC_TW
big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf 8 BIG5 UNICODE
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to utf 8 EUC_CN UNICODE
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf 8 EUC_JP UNICODE
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf_8 EUC_KR UNICODE
euc_tw_to_big5 EUC_TW BIG5
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf 8 EUC_TW UNICODE
gb18030_to_utf_8 GB18030 UNICODE
gbk_to_utf 8 GBK UNICODE
iso_8859_10_to_utf_8 LATING UNICODE
iso_8859 13 to_utf 8 LATIN7 UNICODE
iso_8859 14 to_utf 8 LATINS UNICODE

110

Chapter 9. Functions and Operators

Conversion Name a

Source Encoding

Destination Encoding

iso_8859 15 to_utf_8 LATIN9 UNICODE
iso_8859_16_to_utf_8 LATIN10 UNICODE
iso_8859 1 to_mic LATIN1 MULE_INTERNAL
iso_8859 1 to utf 8 LATIN1 UNICODE
iso_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859_2_to_utf 8 LATIN2 UNICODE
iso_8859 2 to_windows_1250 [LATIN2 WIN1250
iso_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859 3 to_utf 8 LATIN3 UNICODE
iso_8859 4 _to_mic LATINA MULE_INTERNAL
iso_8859 4 to_utf 8 LATINA UNICODE
iso_8859_5_to_koi8_r ISO_8859_5 KOI8

iso_8859 5 to_mic ISO_8859 5 MULE_INTERNAL
iso_8859_5_to_utf 8 ISO_8859_5 UNICODE
iso_8859 5 to_windows_1251 [ISO_8859 5 WIN

iso_8859 5 to windows_866 ISO 8859 5 ALT
iso_8859_6_to_utf 8 ISO_8859_6 UNICODE
iso_8859_7_to_utf 8 ISO_8859 7 UNICODE
iso_8859_8_to_utf_8 ISO_8859_8 UNICODE
iso_8859_9_to_utf 8 LATINS UNICODE
johab_to_utf 8 JOHAB UNICODE
koi8_r_to_iso_8859 5 KOI8 ISO_8859_5
koi8_r_to_mic KOI8 MULE_INTERNAL
koi8 r_to_utf 8 KOI8 UNICODE
koi8_r_to_windows_1251 KOI8 WIN
koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859 1 MULE_INTERNAL LATIN1
mic_to_iso_8859 2 MULE_INTERNAL LATIN2
mic_to_iso_8859 3 MULE_INTERNAL LATIN3
mic_to_iso_8859 4 MULE_INTERNAL LATIN4
mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8

mic_to_sjis MULE_INTERNAL SJIS

111

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN
mic_to_windows_866 MULE_INTERNAL ALT
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf 8 SJIS UNICODE
tcvn_to_utf 8 TCVN UNICODE
uhc_to_utf_8 UHC UNICODE
utf_8_to_ascii UNICODE SQL_ASCII
utf_8 to_big5 UNICODE BIG5

utf 8 to_euc_cn UNICODE EUC_CN
utf_8 to_euc_jp UNICODE EUC_JP
utf_8 to_euc_kr UNICODE EUC_KR
utf_8 to_euc_tw UNICODE EUC_TW
utf_8 to_gb18030 UNICODE GB18030
utf_8 to_gbk UNICODE GBK

utf 8 _to_iso_8859 1 UNICODE LATIN1
utf_8_to_iso_8859 10 UNICODE LATING

utf 8 to_iso_8859 13 UNICODE LATIN7
utf_8_to_iso_8859 14 UNICODE LATIN8
utf_8 to_iso_8859 15 UNICODE LATIN9

utf 8 to_iso_8859 16 UNICODE LATIN10

utf 8 to_iso_8859 2 UNICODE LATIN2
utf_8_to_iso_8859 3 UNICODE LATIN3
utf_8_to_iso_8859 4 UNICODE LATIN4
utf_8_to_iso_8859 5 UNICODE ISO_8859_5
utf_8_to_iso_8859_6 UNICODE ISO_8859_6
utf 8 to_iso_8859 7 UNICODE ISO_8859 7
utf 8 to_iso_8859 8 UNICODE ISO_8859 8
utf_8_to_iso_8859 9 UNICODE LATINS
utf_8_to_johab UNICODE JOHAB
utf_8 to_koi8_r UNICODE KOI8
utf_8_to_sjis UNICODE SJIS

utf_8 to_tcvn UNICODE TCVN

utf 8 to_uhc UNICODE UHC
utf_8_to_windows_1250 UNICODE WIN1250
utf_8_to_windows_1251 UNICODE WIN
utf_8_to_windows_1256 UNICODE WIN1256
utf_8 to_windows_866 UNICODE ALT

utf_8 to_windows_874 UNICODE WIN874
windows_1250 to iso 8859 2 |WIN1250 LATIN2

112

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf_8 WIN1250 UNICODE
windows_1251 to iso 8859 5 [WIN ISO 8859 5
windows_1251 to koi8 r WIN KOI8
windows_1251_to_mic WIN MULE_INTERNAL
windows_1251_to_utf_8 WIN UNICODE
windows_1251_to_windows_866 \WIN ALT
windows_1256_to_utf_8 WIN1256 UNICODE
windows_866 to iso 8859 5 |ALT ISO 8859 5
windows_866_to_koi8 r ALT KOI8
windows_866_to_mic ALT MULE_INTERNAL
windows_866_to_utf_8 ALT UNICODE
windows_866_to_windows_1251 ALT WIN
windows_874_to_utf 8 WIN874 UNICODE

Notes:a. The conversion names follow a standard haming scheme: The official name of the source encoding

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating valueskytégpe

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afalite 9-9 Some functions are also implemented
using the regular syntax for function invocation. (Sekle 9-10)

Table 9-9. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string I bytea String "\WPost'::bytea \Post’gres\000
string concatenation I

'\047gres\\000’::bytea

Number of bytes irpctet_length(
binary string 'jo\\000se’::bytea)

octet_length (strinmteger

position (substringjinteger Location of position("\000om’::bigtea
in string) specified substringn

'Th\\000omas'::bytea)
substring (string |oytea Extract substring isubstring('Th\\000orm800iytea
[from integer] from 2 for 3)
[for integer 1)

113

Chapter 9. Functions and Operators

Function Return Type Description Example Result
trim ([both] bytea Remove the trim("\000'::bytea [Tom
bytes from longest string from

string) containing only theé\\000Tom\\000'::bytea)

bytes inbytes
from the start and
end ofstring

get_byte (string finteger Extract byte from get_byte('Th\\000omH39:bytea,
offset) string. 4)

set_byte (string [pytea Set byte in string. [set_byte(' Th\\000onjak\0be@as
offset 4, 64)

newvalue)

get_bit (string ,integer Extract bit from get_bit(Th\\00Oomag:::bytea,
offset) string. 45)

set_bit (string ,joytea Set bitin string. |set_bit(Th\\000omaFhiyeeamAs
offset , 45, 0)

newvalue)

Additional binary string manipulation functions are available and are list&aiate 9-10 Some of
them are used internally to implement the SQL-standard string functions lisTedbie 9-9

Table 9-10. Other Binary String Functions

Function Return Type Description Example Result
btrim (string bytea Remove the btrim("\\000trim\\0OO(trinytea,
bytea bytes longest string "\000'"::bytea)

bytea) consisting only of

bytes inbytes
from the start and
end ofstring

length (string) [integer Length of binary |length(’jo\\000se’::bysea)
string
decode (string bytea Decode binary decode(’123\\000458'23\000456
text , type string from 'escape’)
text) string
previously encoded
\with encode .

Parameter type is
same as irencode .

encode (string text Encode binary encode('123\\00045@'28\a68456
bytea , type string to 'escape’)
text) ASCII-only
representation.
Supported types
are:base64 , hex,
escape .

114

Chapter 9. Functions and Operators

9.6. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQLLIKE operator, the more recent SQLSMILAR TO operator, and POSIX-style regular expres-
sions. Additionally, a pattern matching functicupstring , is available, using either SQL99-style

or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.6.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Everypattern defines a set of strings. TI&E expression returns true if tls#ring is contained
in the set of strings represented jpgttern . (As expected, th8lOT LIKE expression returns false
if LIKE returns true, and vice versa. An equivalent expressidiois (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that caseLIKE acts like the equals operator. An underscorgif pattern stands for
(matches) any single character; a percent sigmatches any string of zero or more characters.

Some examples:

‘abc’ LIKE ’'abc’ true
‘abc’ LIKE 'a%’ true
‘abc’ LIKE b’ true
'abc’ LIKE 'c¢’ false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter inpattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using$l@PEclause. To match the escape char-
acter itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern
that actually matches a literal backslash means writing four backslashes in the statement. You can
avoid this by selecting a different escape character B88APE then a backslash is not special to

LIKE anymore. (But it is still special to the string literal parser, so you still need two of them.)

It's also possible to select no escape character by wrEBGAPE " This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key wordLIKE can be used instead biKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator-~ is equivalent toLIKE , and ~~* corresponds tdLIKE . There are alsa~~ and
I~~* operators that represeNDT LIKE andNOT ILIKE , respectively. All of these operators are
PostgreSQL-specific.

115

Chapter 9. Functions and Operators

9.6.2. SIMILAR TO and SQL99 Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern = [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is much likeLIKE , except that it interprets the pattern using SQL99’s definition of a regular
expression. SQL99's regular expressions are a curious cross betweEemotation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern may match any part of the string.
Also like LIKE , SIMILAR TO uses_and%as wildcard characters denoting any single character and
any string, respectively (these are comparableaod.* in POSIX regular expressions).

In addition to these facilities borrowed fromKE , SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

- | denotes alternation (either of two alternatives).

- * denotes repetition of the previous item zero or more times.

- + denotes repetition of the previous item one or more times.

- Parenthese§ may be used to group items into a single logical item.

- A bracket expressiop..] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition @nd{...}) are not provided, though they exist in POSIX. Also, the
dot (.) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified \EBCAPE

Some examples:

‘abc’ SIMILAR TO ’abc’ true
‘abc’ SIMILAR TO & false
‘abc’ SIMILAR TO '%(b|d)%’ true
‘abc’ SIMILAR TO '(b|c)%’ false

The substring function with three parameterssubstring(string from pattern for
escape-character), provides extraction of a substring that matches a SQL99 regular expression
pattern. As withSIMILAR TO, the specified pattern must match to the entire data string, else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double)qidie (

text matching the portion of the pattern between these markers is returned.

Some examples:

substring('foobar’ from '%#"o_b#"%’ for '#) oob
substring('foobar’ from '#'o_b#"'%’ for '#') NULL

116

Chapter 9. Functions and Operators

9.6.3. POSIX Regular Expressions

Table 9-11lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, cagg@mas’ ~ '.*thomas.*
sensitive

~* Matches regular expression, cag@mas’ ~* ' *Thomas.*
insensitive

I~ Does not match regular ‘thomas’ !~ '.*Thomas.*
expression, case sensitive

1~* Does not match regular 'thomas’ !~* ’*vadim.*'
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching thakehand
SIMILAR TO operators. Many Unix tools such egrep , sed, orawk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular sej. A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As withKE , pattern characters match string characters exactly unless
they are special characters in the regular expression language --- but regular expressions use different
special characters thanke does. UnlikeLIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

‘abc’ ~ ’abc’ true
‘abc’ ~ na’ true
‘abc’ ~ '(b|d) true
‘abc’ ~ "A(b|c) false

The substring function with two parametergubstring(string from pattern), provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is
no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose
left parenthesis comes first) is returned. You can always put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception. Also see the non-capturing
parentheses described below.

Some examples:

substring('foobar’ from ’'0.b’) oob
substring('foobar’ from 'o(.)b’) o]

PostgreSQL'’s regular expressions are implemented using a package written by Henry Spencer. Much
of the description of regular expressions below is copied verbatim from his manual entry.

117

Chapter 9. Functions and Operators

9.6.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two fextesidedREs or EREs
(roughly those otgrep), andbasicREs or BREs (roughly those efl). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used anyway due to their availability in programming languages such as Perl and Tcl. REs
using these non-POSIX extensions are cafiddancedREs or AREs in this documentation. AREs

are almost an exact superset of ERESs, but BREs have several notational incompatibilities (as well as
being much more limited). We first describe the ARE and ERE forms, noting features that apply only
to AREs, and then describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter (described in Section 16.4). The usual setting is advanced ,
but one might choose extended for maximum backwards compatibility with pre-7.4 releases of
PostgreSQL.

A regular expression is defined as one or mior@ches separated by. It matches anything that
matches one of the branches.

A branch is zero or morgquantified atom®r constraints concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is aatompossibly followed by a singlguantifier. Without a quantifier, it matches

a match for the atom. With a quantifier, it can match some number of matches of the atatordn
can be any of the possibilities shownTable 9-12 The possible quantifiers and their meanings are
shown inTable 9-13

A constraintmatches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown ifable 9-14 some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description
(re) (wherere is any regular expression) matches|a
match forre , with the match noted for possible
reporting

(?: re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] abracket expressigmatching any one of the
chars (seeSection 9.6.3.20r more detail)

\ k (wherek is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.d\ matches a backslash characte

\cC wherec is alphanumeric (possibly followed by,
other characters) is aascapeseeSection 9.6.3.3
(AREs only; in EREs and BREs, this matctes

=

118

Chapter 9. Functions and Operators

Atom Description

{ when followed by a character other than a digjt,
matches the left-brace charactemwhen followed
by a digit, it is the beginning of hound (see
below)

wherex is a single character with no other
significance, matches that character

An RE may not end with .

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string

literals. To write a pattern constant that contains a backslash, you must write two backslashes in
the statement.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

*

a sequence of 0 or more matches of the atom
a sequence of 1 or more matches of the atom
a sequence of 0 or 1 matches of the atom

+

?

{m a sequence of exactipmatches of the atom
{m} a sequence ghor more matches of the atom
{mn} a sequence ahthroughn (inclusive) matches of

the atommmay not exceed
non-greedy version of

*2

+? non-greedy version of

?? non-greedy version of
{m? non-greedy version dfn}
{m}? non-greedy version dfm}
{m n}? non-greedy version dfm n}

The forms usind ... } are known asounds. The numbersnandn within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedyquantifiers (available in AREs only) match the same possibilities as their correspond-

ing normal @reedy counterparts, but prefer the smallest number rather than the largest number of
matches. Se8ection 9.6.3.50r more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an
expression or subexpression or follow ~ or | .

Table 9-14. Regular Expression Constraints

Constraint Description

N

matches at the beginning of the string

119

Chapter 9. Functions and Operators

Constraint Description
$ matches at the end of the string
(?=re) positive lookaheadhatches at any point where|a

substring matchinge begins (ARESs only)

(?! re) negative lookaheathatches at any point where
no substring matchinge begins (AREs only)

Lookahead constraints may not cont&iack referenceg¢seeSection 9.6.3.8 and all parentheses
within them are considered non-capturing.

9.6.3.2. Bracket Expressions

A bracket expressiois a list of characters enclosed(in. It normally matches any single character
from the list (but see below). If the list begins with it matches any single characteot from the
rest of the list. If two characters in the list are separated fthis is shorthand for the full range of
characters between those two (inclusive) in the collating sequencfg-e]g. in ASCII matches any
decimal digit. It is illegal for two ranges to share an endpoint,&ge . Ranges are very collating-
sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible To include a

literal - , make it the first or last character, or the second endpoint of a range. To use & literal

the first endpoint of a range, enclose it[in and.] to make it a collating element (see below).
With the exception of these characters, some combinations u¢seg next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular,\ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclpseghith.]

stands for the sequence of characters of that collating element. The sequence is a single element of
the bracket expression’s list. A bracket expression containing a multiple-character collating element
can thus match more than one character, e.qg. if the collating sequence inathdesllating element,

then the RE[.ch.]]*c matches the first five charactersobthcc .

Note: PostgreSQL currently has no multi-character collating elements. This information describes
possible future behavior.

Within a bracket expression, a collating element encloséd iand=] is an equivalence class, stand-

ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimitérs were
and.] .) For example, ib and” are the members of an equivalence class, fres]] , [="=]] ,
and[o”] are all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclogedaimd:] stands for the list

of all characters belonging to that class. Standard character class nanasuafie:alpha , blank ,

cntrl , digit ,graph ,lower ,print ,punct ,space ,upper ,xdigit .These stand for the character
classes defined in ctype. A locale may provide others. A character class may not be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket exprfissiatis and[: >:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.

120

Chapter 9. Functions and Operators

A word character is aalnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. The constraint escapes described below are usually preferable
(they are no more standard, but are certainly easier to type).

9.6.3.3. Regular Expression Escapes

Escapesare special sequences beginning wittiollowed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in ARESs. In
ERESs, there are no escapes: outside a bracket expressidoll@aved by an alphanumeric character

merely stands for that character as an ordinary character, and inside a bracket expreissam,

ordinary character. (The latter is the one actual incompatibility between EREs and ARES.)

Character-entry escapexist to make it easier to specify non-printing and otherwise inconvenient
characters in REs. They are showrTable 9-15

Class-shorthand escapesovide shorthands for certain commonly-used character classes. They are
shown inTable 9-16

A constraint escapés a constraint, matching the empty string if specific conditions are met, written
as an escape. They are showTable 9-17

A back referencé\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number (seeTable 9-18. For example([bc])\1 matchesbb or cc but notbc

or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant.

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

\a alert (bell) character, asin C

\b backspace, asin C

\B synonym fon to help reduce the need for

backslash doubling

\c X (whereX is any character) the character whose
low-order 5 bits are the same as thos&pand
whose other bits are all zero

\e the character whose collating-sequence name is
ESG or failing that, the character with octal value
033

\f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\t horizontal tab, as in C

121

Chapter 9. Functions and Operators

Escape Description

\u wxyz (wherewxyz is exactly four hexadecimal digits)
the Unicode character+wxyz in the local byte
ordering

\U stuvwxyz (wherestuvwxyz is exactly eight hexadecimal

digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, asin C
\x hhh (wherehhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
0xhhh (a single character no matter how many
hexadecimal digits are used)
\0 the character whose valueds
\ Xy (wherexy is exactly two octal digits, and is not a
back referencethe character whose octal value is
0xy
\ Xyz (wherexyz is exactly three octal digits, and is
not aback referencethe character whose octal
\value isOxyz
Hexadecimal digits are-9, a-f , andA-F. Octal digits are®-7.
The character-entry escapes are always taken as ordinary characters. For ezampsg, in ASCII,
but\135 does not terminate a bracket expression.
Table 9-16. Regular Expression Class-Shorthand Escapes
Escape Description
\d [[:digit:]]
\s [[:space:]]
\w [[:alnum:]_] (note underscore is included)
\D [Mdigit:]]
\S [M:space:]]
\W [M:alnum:]_] (note underscore is included
Within bracket expressiong] , \s , and\w lose their outer brackets, akd, \S , and\w are illegal.
(So, for examplefa-c\d] is equivalent tda-c[:digit:]] . Also, [a-c\D] , which is equivalent
to [a-cM[:digit:]] ,isillegal.)
Table 9-17. Regular Expression Constraint Escapes
Escape Description
\A matches only at the beginning of the string (see
Section 9.6.3.%or how this differs fronm)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word

122

Chapter 9. Functions and Operators

Escape Description

\Y matches only at a point that is not the beginning
or end of a word

\Z matches only at the end of the string (&stion
9.6.3.5for how this differs froms)

A word is defined as in the specification [ff <:]] and[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\'m (wheremis a nonzero digit) a back reference tp
thenith subexpression

\ mnn (wheremis a nonzero digit, andn is some morg

digits, and the decimal valuannis not greater
than the number of closing capturing parentheses
seen so far) a back reference to then'th
subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back
references, which is resolved by heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e. the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.6.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

Normally the flavor of RE being used is determinedrbyex_flavor . However, this can be over-
ridden by adirector prefix. If an RE of any flavor begins withi*: |, the rest of the RE is taken as an
ARE. If an RE of any flavor begins witht*= |, the rest of the RE is taken to be a literal string, with
all characters considered ordinary characters.

An ARE may begin withembedded optionsa sequencé€? xyz) (wherexyz is one or more alpha-

betic characters) specifies options affecting the rest of the RE. These options override any previously
determined options (including both the RE flavor and case sensitivity). The available option letters
are shown ifrable 9-19

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

123

Chapter 9. Functions and Operators

Option Description
i case-insensitive matching (s8ection 9.6.3.p
(overrides operator type)

m historical synonym fon

n newline-sensitive matching (s&ection 9.6.3.b

p partial newline-sensitive matching (s8ection
9.6.3.5

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (se&ection 9.6.3.p

X expanded syntax (see below)

Embedded options take effect at theerminating the sequence. They are available only at the start
of an ARE, and may not be used later within it.

In addition to the usualtight) RE syntax, in which all characters are significant, there iexgranded
syntax, available by specifying the embeddemption. In the expanded syntax, white-space characters

in the RE are ignored, as are all characters betwegarad the following newline (or the end of the

RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

- awhite-space character#ipreceded by is retained
- white space o#t within a bracket expression is retained

« white space and comments are illegal within multi-character symbols, like the (AREr the
BRE\(

Expanded-syntax white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequ@wctit) (wherettt is any text not
containing g) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like: . Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

Noneof these metasyntax extensions is available if an inittal director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.6.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
its choice is determined by ifweferenceeither the longest substring, or the shortest.

Most atoms, and all constraints, have no preference. A parenthesized RE has the same preference
(possibly none) as the RE. A quantified atom with quantifigy or { n}? has the same preference
(possibly none) as the atom itself. A quantified atom with other normal quantifiers (incluating

with mequal ton) prefers longest match. A quantified atom with other non-greedy quantifiers (includ-

ing {m n}? with mequal ton) prefers shortest match. A branch has the same preference as the first

124

Chapter 9. Functions and Operators

guantified atom in it which has a preference. An RE consisting of two or more branches connected by
the| operator prefers longest match.

Subject to the constraints imposed by the rules for matching the whole RE, subexpressions also match
the longest or shortest possible substrings, based on their preferences, with subexpressions starting
earlier in the RE taking priority over ones starting later. Note that outer subexpressions thus take
priority over their component subexpressions.

The quantifier§1,1} and{1,1}? can be used to force longest and shortest preference, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For examplés* matches the three middle charactersabbbc ;
(week|wee)(night|knights) matches all ten characters afeeknights ; when (.*).* is
matched againgtbc the parenthesized subexpression matches all three characters; an@#en

is matched againdtic both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.gx becomegxX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, g]g. becomegxX] and[*x] become$ xX]

If newline-sensitive matching is specified,and bracket expressions usifigwill never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~and$ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escepesd\Z continue to match beginning

or end of stringonly.

If partial newline-sensitive matching is specified, this affectand bracket expressions as with
newline-sensitive matching, but notand$.

If inverse partial newline-sensitive matching is specified, this affearsd$ as with newline-sensitive
matching, but not and bracket expressions. This isn’t very useful but is provided for symmetry.

9.6.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is\tttdes not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREsthesyntax of directors likewise is outside

the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note intlyde , the lack of

special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL.:

125

Chapter 9. Functions and Operators

« In AREs,\ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs,\ remains a special character within, so a literal within a bracket expression must
be written\\ .

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by settinggex_flavor ~ to extended .

9.6.3.7. Basic Regular Expressions

BREs differ from EREs in several respedts+, and? are ordinary characters and there is no equiva-
lent for their functionality. The delimiters for bounds &eand\} , with { and} by themselves ordi-
nary characters. The parentheses for nested subexpressighsaad) , with (and) by themselves
ordinary characterg. is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpressins an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leadiigally, single-digit back
references are available, and and\ > are synonyms foff: <:]] and[: >:] respectively; no
other escapes are available.

9.7. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data type$able 9-20lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 9-20. Formatting Functions

Function Return Type Description Example

to_char (timestamp , [text convert time stamp to to_char(current_timestamp,

text) string 'HH12:MI:SS)

to_char (interval text convert interval to stringo_char(interval

text) '15h 2m 12s’,
'HH24:MI:SS")

to_char (int , text) fext convert integer to stringo_char(125,
'999")

to_char (double text convert real/double fto_char(125.8::real,

precision , text) precision to string '999D9')

to_char (numeric , text convert numeric to string_char(-125.8,

text) '999D99S")

to_date (text , text) |date convert string to date to_date('05 Dec 2000’
'DD Mon YYYY’)

to_timestamp (text , timestamp convert string to time fto_timestamp('05 Dec 2000’,

text) stamp ‘DD Mon YYYY’)

126

Chapter 9. Functions and Operators

Function Return Type Description Example
to_number (text , numeric convert string to numerto_number('12,454.8-’,
text) W’99G999D98’)

Warning:to_char (interval , text) is deprecated and should not be used in newly-written code. It
will be removed in the next version.

In an output template string (fes_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template
pattern is simply copied verbatim. Similarly, in an input template string (for anythingbcitar),
template patterns identify the parts of the input data string to be looked at and the values to be found
there.

Table 9-21shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

MS millisecond (000-999)

us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

IAMor A.M. or PMor P.M. meridian indicator (upper case)

amora.m. Or pmor p.m. meridian indicator (lower case)

chars)

127

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCorB.C. orADorA.D. era indicator (upper case)

bc orb.c. orad ora.d. era indicator (lower case)

MONTH full upper-case month name (blank-padded to|9
chars)

Month full mixed-case month name (blank-padded to|9
chars)

month full lower-case month name (blank-padded to
chars)

MON abbreviated upper-case month name (3 chars

Mon abbreviated mixed-case month name (3 chars

mon abbreviated lower-case month name (3 chars)

MM month number (01-12)

DAY full upper-case day name (blank-padded to 9

Chapter 9. Functions and Operators

Pattern Description

Day full mixed-case day name (blank-padded to 9
chars)

day full lower-case day name (blank-padded to 9
chars)

DY abbreviated upper-case day name (3 chars)

Dy abbreviated mixed-case day name (3 chars)

dy abbreviated lower-case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; Sunday is 1)

week of month (1-5) (The first week starts on the
first day of the month.)

Ww week number of year (1-53) (The first week starts
on the first day of the year.)

W ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman numerals (I-XII; I=January)
(upper case)

rm month in Roman numerals (i-xii; i=January)
(lower case)

TZ time-zone name (upper case)

tz time-zone name (lower case)

Certain modifiers may be applied to any template pattern to alter its behavior. For examiglsth
is theMonth pattern with theeMmmodifier. Table 9-22shows the modifier patterns for date/time for-
matting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FMprefix fill mode (suppress padding [FMMonth
blanks and zeroes)

TH suffix upper-case ordinal number suffddTH

th suffix lower-case ordinal number sufibOth

FX prefix fixed format global option (see|FX Month DD Day
usage notes)

SP suffix spell mode (not yet DDSP
implemented)

Usage notes for the date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output

128

Chapter 9. Functions and Operators

of a pattern be fixed-width.

+ to_timestamp and to_date skip multiple blank spaces in the input string if
the FX option is not used.FX must be specified as the first item in the template.
For example to_timestamp('2000 JUN’, 'YYYY MON) is correct, but
to_timestamp('2000 JUN’, 'EXYYYY MON’) returns an error, because timestamp
expects one space only.

- Ordinary text is allowed imo_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the single
in Year will not be.

- If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple’\"YYYY Month\" . (Two backslashes are necessary because the backslash already has a
special meaning in a string constant.)

« The YYYY conversion from string taimestamp or date has a restriction if you use a year
with more than 4 digits. You must use some non-digit character or template \aftey,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date('200001131’, 'YYYYMMDD’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the vyear, like_date(’20000-1131’, 'YYYY-MMDD’) or
to_date(’20000Nov31’, 'YYYYMonDD’)

« Millisecond (M9 and microsecondJS) values in a conversion from string timestamp are used
as part of the seconds after the decimal point. For exampiinestamp(’'12:3’, 'SS:MS’)
is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means
for the formatSS:MS, the input valued2:3 , 12:30 , and12:300 specify the same number of
milliseconds. To get three milliseconds, one must1&se03 , which the conversion counts as 12
+0.003 = 12.003 seconds.

Here is a more complex example:to_timestamp(’15:12:02.020.001230’,
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

Table 9-23shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 \value with the specified number of digits

0 \value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

M minus sign in specified position (if number0)
PL plus sign in specified position (if numbegr0)

129

Chapter 9. Functions and Operators

Pattern Description

SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THorth ordinal number suffix

\Y shift specified number of digits (see notes)
EEEE scientific notation (not implemented yet)

Usage notes for the numeric formatting:

« A sign formatted usingG PL, or Ml is not anchored to the number; for exampte char(-12,
'S9999") produces -12' , butto_char(-12, 'MI19999") produces- 12° . The Oracle
implementation does not allow the usemifahead 0B, but rather requires thatprecedemi.

+ 9 results in a value with the same number of digits as theresrdf a digit is not available it
outputs a space.

. THdoes not convert values less than zero and does not convert fractional numbers.
« PL, SG andTHare PostgreSQL extensions.

« V effectively multiplies the input values by0” n, wheren is the number of digits followingy.
to_char does not support the use ¥fcombined with a decimal point. (E.c99.9v99 is not
allowed.)

Table 9-24shows some examples of the use oftiehar function.

Table 9-24.to_char Examples

Expression Result
to_char(current_timestamp, 'Tuesday , 06 05:39:18’
'Day, DD HH12:MI:SS’)

to_char(current_timestamp, 'Tuesday, 6 05:39:18’
'FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, '99.99’) - =10

to_char(-0.1, 'FM9.99") -1

to_char(0.1, '0.9) - 0.1

to_char(12, '9990999.9") ' 0012.0¢
to_char(12, 'FM9990999.9’) '0012.

to_char(485, '999’) " 485’

to_char(-485, '999’) -485’

to_char(485, '9 9 9) 485

to_char(1485, '9,999’) ' 1,485

to_char(1485, '9G999’) " 1 485
to_char(148.5, '999.999’) ' 148.500°
to_char(148.5, 'FM999.999’) '148.5’

to_char(148.5, 'FM999.990") '148.500’
to_char(148.5, '999D999’) ' 148,500’

130

Chapter 9. Functions and Operators

Expression Result
to_char(3148.5, '9G999D999’) " 3 148,500’
to_char(-485, '999S’) '485-’

to_char(-485, '999MI’) '485-’

to_char(485, '999MI’) ‘485

to_char(485, 'FM999MI’) 485’

to_char(485, 'PL999") '+485’

to_char(485, 'SG999’) '+485’

to_char(-485, 'SG999’) -485’

to_char(-485, '9SG99’) '4-85'

to_char(-485, '999PR’) | <485>’
to_char(485, 'L999') 'DM 485
to_char(485, 'RN’) CDLXXXV’
to_char(485, 'FMRN’) "CDLXXXV’
to_char(5.2, 'FMRN’) v

to_char(482, '999th’) " 482nd’
to_char(485, ™Good number:"999’) 'Good number: 485’
to_char(485.8, 'Pre: 485 Post: .800’
""Pre:"999" Post:" .999’)

to_char(12, '99V999’) " 12000’
to_char(12.4, '99Vv999’) ' 12400’
to_char(12.45, '99V9’) ' 125’

9.8. Date/Time Functions and Operators

Table 9-26shows the available functions for date/time value processing, with details appearing in
the following subsectionstable 9-25illustrates the behaviors of the basic arithmetic operateys (

*, etc.). For formatting functions, refer ®ection 9.7 You should be familiar with the background
information on date/time data types frddection 8.5

All the functions and operators described below that take ortimestamp inputs actually come
in two variants: one that takéisme with time zone ortimestamp with time zone , and one
that takestime without time zone or timestamp without time zone . For brevity, these
variants are not shown separately.

Table 9-25. Date/Time Operators

Operator Example Result

+ date '2001-09-28" + date '2001-10-05
integer 7’

+ date '2001-09-28" + timestamp '2001-09-28
interval '1 hour’ 01:00

+ date '2001-09-28" + time timestamp '2001-09-28
'03:00° 03:00’

131

Chapter 9. Functions and Operators

Operator Example Result

+ time '03:00' + date timestamp '2001-09-28
'2001-09-28’ 03:00’

+ interval 'l day’ + interval '1 day 01:00°
interval '1 hour’

+ timestamp '2001-09-28 timestamp '2001-09-29
01:00' + interval '23 00:00’
hours’

+ time '01:00° + interval time '04:00°
'3 hours’

+ interval '3 hours’ + time '04:00
time '01:00’

- - interval '23 hours’ interval ’-23:00’'

- date '2001-10-01' - date integer '3’
'2001-09-28’

- date '2001-10-01" - date '2001-09-24
integer '7’

- date '2001-09-28" - timestamp '2001-09-27
interval '1 hour’ 23:00°

- time '05:00" - time interval '02:00’
'03:00’

- time '05:00" - interval time '03:00’
'2 hours’

- timestamp '2001-09-28 timestamp '2001-09-28
23:00' - interval '23 00:00
hours’

- interval '1 day’ - interval '23:00°
interval '1 hour’

- interval '2 hours’ - time '03:00’
time '05:00°

- timestamp '2001-09-29 interval '1 day 15:00'
03:00" - timestamp
'2001-09-27 12:00°

* double precision '3.5" * interval '03:30
interval '1 hour’

* interval '1 hour’ * interval '03:30’
double precision '3.5’

/ interval '1 hour’ / interval '00:40’
double precision '1.5’

Table 9-26. Date/Time Functions

Function Return Type Description Example Result

43 years 8
mons 3 days

age (timestamp) |interval

Subtract from todagge(timestamp
Tﬁ.957-06-13')

132

Chapter 9. Functions and Operators

time; seeSection
9.8.4

Function Return Type Description Example Result
age(timestamp , |interval Subtract argumentsge('2001-04-10’, 43 years 9
timestamp) timestamp mons 27 days
'1957-06-13")
current_date date Today's date; see
Section 9.8.4
current_time time with time Time of day; see
zone Section 9.8.4
current_timestamp timestamp with Date and time; see
time zone Section 9.8.4
date part (text , [double Get subfield date_part(hour’, |20
timestamp) precision (equivalent to timestamp
extract); see '2001-02-16
Section 9.8.1 20:38:40")
date_part (text , [double Get subfield date_part(month’, 3
interval) precision (equivalent to interval 2
extract); see years 3
Section 9.8.1 months’)
date_trunc (text , timestamp Truncate to date_trunc(’hour’, [2001-02-16
timestamp) specified precisiontimestamp 20:00:00
see als®ection [2001-02-16
9.8.2 20:38:40)
extract (field double Get subfield; see [extract(hour 20
from timestamp) |precision Section 9.8.1 from timestamp
'2001-02-16
20:38:40")
extract (field double Get subfield; see [extract(month 3
from interval) |precision Section 9.8.1 from interval
'2 years 3
months’)
isfinite (timestamgbgolean Test for finite time fisfinite(timestamp ftrue
stamp (not equal t¢r001-02-16
infinity) 21:28:30")
isfinite ~ (interval [Joolean Test for finite isfinite(interval true
interval '4 hours’)
localtime time Time of day; see
Section 9.8.4
localtimestamp timestamp Date and time; see
Section 9.8.4
now() timestamp with Current date and
time zone time (equivalent to
current_timestamp |);
seeSection 9.8.4
timeofday() text Current date and

In addition to these functions, the S@VERLAPSperator is supported:

133

Chapter 9. Functions and Operators

(startl , endl) OVERLAPS (start2 , end2)
(startl , lengthl) OVERLAPS (start2 , length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval.

SELECT (DATE ’'2001-02-16', DATE '2001-12-21') OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30%;

Result: true

SELECT (DATE '2001-02-16’, INTERVAL '100 days’) OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30");

Result: false

9.8.1. EXTRACT date_part

EXTRACT field FROMsource)

The extract function retrieves subfields from date/time values, such as year or $munce is
a value expression that evaluates to tyipeestamp or interval . (Expressions of typeate or
time will be cast totimestamp and can therefore be used as wdle)d is an identifier or string
that selects what field to extract from the source value.edact function returns values of type
double precision . The following are valid field names:

century

The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the
conventional definition which puts most years in the 1900’s in the twentieth century.

day
The day (of the month) field (1 - 31)
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 16
decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 200
dow
The day of the week (0 - 6; Sunday is 0) (fonestamp values only)
SELECT EXTRACT(DOW FROM TIMESTAMP °'2001-02-16 20:38:40’);
Result: 5
doy

The day of the year (1 - 365/366) (fomestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47

134

Chapter 9. Functions and Operators

epoch

Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval ~ values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-08");
Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours’);
Result: 442800
hour
The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5");
Result: 28500000

millennium

The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2

Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5);
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40);
Result: 38

month

Fortimestamp values, the number of the month within the year (1 - 12) jdf@rval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL 2 years 13 months’);
Result: 1

135

Chapter 9. Functions and Operators

quarter
The quarter of the year (1 - 4) that the day is in (forestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40%;
Result: 1

second
The seconds field, including fractional parts (0)59
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 40
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5’);
Result: 28.5
timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The 1SO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year. {fioestamp values only)

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40);
Result: 7

year

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time
values for display, seSection 9.7

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract

date_part(’ field °, source)

Note that here théeld parameter needs to be a string value, not a name. The valid field names for
date_part are the same as fextract

SELECT date_part('day’, TIMESTAMP '2001-02-16 20:38:40);
Result: 16

SELECT date_part(hour’, INTERVAL 4 hours 3 minutes’);

60 if leap seconds are implemented by the operating system

136

Chapter 9. Functions and Operators

Result: 4

9.8.2. date_trunc

The functiondate_trunc is conceptually similar to theunc function for numbers.

date_trunc(’ field ', source)

source is a value expression of typinestamp orinterval . (Values of typedate andtime are
cast automatically, timestamp or interval respectively.¥ield selects to which precision to
truncate the input value. The return value is of tyipeestamp orinterval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute

hour

day

month

year

decade
century
millennium

Examples:

SELECT date_trunc(hour’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00

SELECT date_trunc(year’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00

9.8.3. AT TIME ZONE

TheAT TIME ZONEconstruct allows conversions of time stamps to different time zofatse 9-27
shows its variants.

Table 9-27.AT TIME ZONEVariants

Expression

Return Type

Description

timestamp without time zone
AT TIME ZONE zone

timestamp with time zone

Convert local time in given time
zone to UTC

timestamp with time zone
AT TIME ZONE zone

timestamp without time
zone

Convert UTC to local time in
given time zone

137

Chapter 9. Functions and Operators

Expression Return Type Description
time with time zone AT time with time zone Convert local time across time
TIME ZONE zone zones

In these expressions, the desired time zomge can be specified either as a text string (ERBT”)
or as an interval (e.gINTERVAL '-08:00").

Examples (supposing that the local time zone$38PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40° AT TIME ZONE 'MST’,
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05" AT TIME ZONE 'MST;
Result: 2001-02-16 18:38:40

The first example takes a zone-less time stamp and interprets it as MST time (UTC-7) to produce a
UTC time stamp, which is then rotated to PST (UTC-8) for display. The second example takes a time
stamp specified in EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone.

9.8.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP frecision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIMEand CURRENT_TIMESTAMRIeliver values with time zonel OCALTIME and
LOCALTIMESTAMPRIeliver values without time zone.

CURRENT_TIME CURRENT_TIMESTAMPLOCALTIME and LOCALTIMESTAMPcan optionally be
given a precision parameter, which causes the result to be rounded to that many fractional digits in
the seconds field. Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

138

Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalentt®ORRENT_TIMESTAMP

There is also the functiotimeofday() , which for historical reasons returngext string rather
than atimestamp value:

SELECT timeofday();
Result: Sat Feb 17 19:07:32.000126 2001 EST

It is important to know thaCURRENT_TIMESTAM&nd related functions return the start time of the
current transaction; their values do not change during the transaction. This is considered a feature:
the intent is to allow a single transaction to have a consistent notion of the “current” time, so that
multiple modifications within the same transaction bear the same time sterapfday() returns

the wall-clock time and does advance during transactions.

Note: Other database systems may advance these values more frequently.

All the date/time data types also accept the special literal vadueto specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’'now’;

Note: You do not want to use the third form when specifying a DEFAULTclause while creating
a table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two forms
will not be evaluated until the default value is used, because they are function calls. Thus they will
give the desired behavior of defaulting to the time of row insertion.

9.9. Geometric Functions and Operators

The geometric typegsoint , box, Iseg , line , path , polygon , andcircle have alarge set of native
support functions and operators, showTable 9-28 Table 9-29 andTable 9-30

Table 9-28. Geometric Operators

139

Chapter 9. Functions and Operators

Operator Description Example
+ Translation box ’((0,0),(1,1))" +
point '(2.0,0)’
Translation box ’((0,0),(1,1))" -
point '(2.0,0)’
* Scaling/rotation box ’((0,0),(1,1)) *
point '(2.0,0)
/ Scaling/rotation box ’((0,0),(2,2)) /
point '(2.0,0)’
Point or box of intersection "((1,-1),(-1,1))
((1,1),(-1,-1))
Number of points in path or # ’((1,0),(0,1),(-1,0))’
polygon
@-@ Length or circumference @-@ path ’'((0,0),(1,0))
@@ Center @@ circle '((0,0),10)
#H# Closest point to first operand opoint ’'(0,0)’ ## Iseg
second operand '((2,0),(0,2)y
<> Distance between circle ’((0,0),1) <->
circle '((5,0),1)
&& Overlaps? box ’((0,0),(1,1)) &&
box '((0,0),(2,2))’
&< Overlaps or is left of? box ’((0,0),(1,1))" & <
box ’((0,0),(2,2))
&> Overlaps or is right of? box ’((0,0),(3,3)) & >
box '((0,0),(2,2)y
<< Is left of? circle ’((0,0),1) <<
circle '((5,0),1)
>> Is right of? circle ’((5,0),1) >>
circle '((0,0),1)
< Is below? circle '((0,0),1)’ <
circle ’((0,5),1)
>N Is above? circle ’((0,5),1) >"
circle '((0,0),1)
% Intersects? Iseg '((-1,0),(1,0))" ?#
box '((-2,-2),(2,2))
?- Is horizontal? ?- Iseg ’((-1,0),(1,0))’
?-)Are horizontally aligned? point '(1,0)' ?- point
'(0,0)
?| Is vertical? ?| Iseg ’'((-1,0),(1,0))
?| /Are vertically aligned? point '(0,1)’ ?| point
'(0,0)
?-| Is perpendicular? Iseg ’((0,0),(0,1))" ?-|
Iseg ’((0,0),(1,0))
?|| Are parallel? Iseg ’((-1,0),(1,0))
?|| Iseg
((-1,2),(1,2))

140

Chapter 9. Functions and Operators

Operator Description Example
~ Contains? circle ’((0,0),2) ~
point '(1,1)’
@ Contained in or on? point '(1,1)’ @ circle
'((0,0).2)
~= Same as? polygon ’'((0,0),(1,1))’
~= polygon
((1,1),0,0))
Table 9-29. Geometric Functions
Function Return Type Description Example
area (object) double precision area area(box
'((0,0),(1,1)))
box_intersect (box, |pox intersection box box_intersect(box
box) '((0,0),(1,1))",box
'((0.5,0.5),(2,2)))
center (object) point center center(box
'((0,0),(1,2)))
diameter (circle) double precision diameter of circle diameter(circle
'((0,0),2.0)")
height (box) double precision \vertical size of box height(box
'((0,0),(1,1)))
isclosed (path) boolean a closed path? isclosed(path
'((0,0),(1,1),(2,0)))
isopen (path) boolean an open path? isopen(path
'1(0,0),(1,1),(2,0)])
length (object) double precision length length(path
'((-1,0),(1,0)))
npoints (path) integer number of points npoints(path
1(0,0),(1,1),(2,0)])
npoints (polygon) integer number of points npoints(polygon
'((1,1),(0,0)))
pclose (path) path convert path to closed [popen(path
1(0,0),(1,1),(2,0)])
popen (path) path convert path to open |popen(path
'((0,0),(1,1),(2,0)))
radius (circle) double precision radius of circle radius(circle
'((0,0),2.0)")
width (box) double precision horizontal size of box width(box
'((0,0),(1,1)))

141

Chapter 9. Functions and Operators

Table 9-30. Geometric Type Conversion Functions

Function Return Type Description Example
box (circle) box circle to box box(circle
'((0,0),2.0)")
box (point , point) box points to box box(point ’(0,0)’,
point '(1,1))
box (polygon) box polygon to box box(polygon
'((0,0),(1,1).(2,0)))
circle (box) circle box to circle circle(box
'((0,0),(1,1)))
circle (point , double [ircle point and radius to circleircle(point
precision) '(0,0)", 2.0)
Iseg (box) Iseg box diagonal to line |lseg(box
segment '((-1,0),(1,0)))
Iseg (point , point) [seg points to line segment |lseg(point
'(-1,0)’, point
'(1,0))
path (polygon) point polygon to path path(polygon
'((0,0),(1,1),(2,0)))
point (circle) point center of circle point(circle
'((0,0),2.0))
point (Iseg , Iseg) point intersection point(Iseg
'((-1,0),(1,0))",
Iseg
'((-2,-2).(2,2)))
point (polygon) point center of polygon point(polygon
'((0,0),(1,1).(2,0)))
polygon (box) polygon box to 4-point polygon polygon(box
'((0,0),(1,1)))
polygon (circle) polygon circle to 12-point polygon(circle
polygon '((0,0),2.0)")
polygon (npts , polygon circle tonpts -point |polygon(12, circle
circle) polygon '((0,0),2.0)")
polygon (path) polygon path to polygon polygon(path
'((0,0),(1,1).(2,0)))

It is possible to access the two component numbers pdiet as though it were an array with

indices 0 and 1. For exampletip
coordinate an@PDATE t SET p[1] = ...
typebox orlseg may be treated as an array of tyaint

is apoint

values.

column therSELECT p[0] FROM t retrieves the X
changes the Y coordinate. In the same way, a value of

142

Chapter 9. Functions and Operators

9.10. Network Address Type Functions

Table 9-31shows the operators available for thidr andinet types. The operators<, <<=,
>>, and>>= test for subnet inclusion. They consider only the network parts of the two addresses,
ignoring any host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31.cidr andinet Operators

Operator Description Example

< is less than inet '192.168.1.5' <
inet '192.168.1.6’

<= is less than or equal inet '192.168.1.5’ <=
inet '192.168.1.5’

= equals inet '192.168.1.5" =
inet '192.168.1.5’

>= is greater or equal inet '192.168.1.5' >=
inet '192.168.1.5’

> is greater than inet '192.168.1.5' >
inet '192.168.1.4’

<> is not equal inet '192.168.1.5' <>
inet '192.168.1.4’

<< is contained within inet '192.168.1.5’ <<
inet '192.168.1/24’

<<= is contained within or equals |inet '192.168.1/24' <<=
inet '192.168.1/24’

>> contains inet'192.168.1/24 >>
inet '192.168.1.5’

>>= contains or equals inet '192.168.1/24’ >>=
inet '192.168.1/24’

Table 9-32shows the functions available for use with ttiedr andinet types. Thehost , text |,
andabbrev functions are primarily intended to offer alternative display formats. You can cast a text
value toinet using normal casting syntaixiet(expression) or colname :inet

Table 9-32.cidr andinet Functions

Function Return Type Description Example Result

broadcast (inet) [inet broadcast addressbroadcast('192.168.[1.822168.1.255/24
for network

host (inet) text extract IP addresshost('192.168.1.5/24192.168.1.5
as text

masklen (inet) integer extract netmask |masklen('192.168.1.3/24")
length

set_masklen (inet finet set netmask lengthset_masklen('192.1682 3681'1.5/16

integer) for inet value 16)

netmask (inet) inet construct netmasknetmask('192.168.1/38%255.255.0
for network

hostmask (inet) [inet construct host mastostmask('192.168.Z8@0/30")
for network

143

Chapter 9. Functions and Operators

Function Return Type Description Example Result

network (inet) cidr extract network partetwork('192.168.1.5/22:168.1.0/24
of address

text (inet) text extract IP addresstext(inet 192.168.1.5/32
and netmask lengt192.168.1.5’)
as text

abbrev (inet) text abbreviated displagibbrev(cidr 10.1/16
format as text a~F;0.1.0.0/16’)

Table 9-33 shows the functions available for use with theacaddr

type. The function

trunc (macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to

associate the remaining prefix with a manufacturer. The direatonyrib/mac

distribution contains some utilities to create and maintain such an association table.

Table 9-33.macaddr Functions

in the source

Function Return Type

Description

Example Result

trunc (macaddr) |macaddr

set last 3 bytes to
zero

trunc(macaddr
'12:34:56:78:90:ab’)

12:34:56:00:00:00

The macaddr type also supports the standard relational operators<E, etc.) for lexicographical

ordering.

9.11. Sequence-Manipulation Functions

This section describes PostgreSQL's functions for operatingegiuence object§equence objects
(also called sequence generators or just sequences) are special single-row tables creargAvith
SEQUENCEA sequence object is usually used to generate unique identifiers for rows of a table. The
sequence functions, listed fable 9-34 provide simple, multiuser-safe methods for obtaining suc-
cessive sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

nextval (text) bigint Advance sequence and return
new value

currval (text) bigint Return value most recently
obtained withnextval

setval (text , bigint) bigint Set sequence’s current value

setval (text , bigint bigint Set sequence’s current value gnd

boolean) is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names,
the sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval('foo’)
nextval('FOO’)
nextval("Foo™)

operates on sequence
operates on sequence
operates on sequence

foo
foo
Foo

144

Chapter 9. Functions and Operators

The sequence name can be schema-qualified if necessary:

nextval(’'myschema.foo’) operates on myschema.foo
nextval(""myschema".foo’) same as above
nextval('foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is
occasionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions executeextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtaineddgxtval for this sequence in the current session.

(An error is reported ihextval has never been called for this sequence in this session.) Notice
that because this is returning a session-local value, it gives a predictable answer even if other
sessions are executingxtval meanwhile.

setval

Reset the sequence object's counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and setsikscalled field totrue , meaning that

the nextnextval will advance the sequence before returning a value. In the three-parameter
form,is_called may be set eitharue orfalse . Ifit's settofalse ,the nexmextval will

return exactly the specified value, and sequence advancement commences with the following
nextval . For example,

SELECT setval('foo’, 42); Next nextval will return 43
SELECT setval('foo’, 42, true); Same as above
SELECT setval('foo’, 42, false); Next nextval will return 42

The result returned bgetval s just the value of its second argument.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same se-
guence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions may leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

If a sequence object has been created with default parame¢ergal calls on it will return suc-
cessive values beginning with 1. Other behaviors can be obtained by using special parameters in the
CREATE SEQUENCEommand; see its command reference page for more information.

9.12. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

145

Chapter 9. Functions and Operators

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

9.12.1. CASE

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other
languages:

CASE WHENondition THEN result
[WHEN ..]
[ELSE result]

END

CASEclauses can be used wherever an expression is ealidlition is an expression that returns a
boolean result. If the result is true then the value of theSEexpression is theesult that follows

the condition. If the result is false any subsequ&htENlauses are searched in the same manner. If
noWHENondition s true then the value of the case expression isg¢balt in theELSEclause.

If the ELSE clause is omitted and no condition matches, the result is null.

An example:

SELECT * FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’'two’
ELSE ’other’
END
FROM test;
a | case
PR
1| one
2 | two
3 | other

The data types of all theesult expressions must be convertible to a single output typeS8eton
10.5for more detail.

The following “simple” CASEexpression is a specialized variant of the general form above:

CASE expression
WHENvalue THEN result
[WHEN ..]
[ELSE result]

END

146

Chapter 9. Functions and Operators

Theexpression is computed and compared to all thelue specifications in th&HEN:lauses
until one is found that is equal. If no match is found, theult in theELSE clause (or a null value)
is returned. This is similar to th@vitch statementin C.

The example above can be written using the singA&Esyntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’

ELSE ‘other’
END
FROM test;
a | case
PR S
1| one
2 | two
3 | other

A CASEexpression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

9.12.2. COALESCE

COALESCEvalue [, ...])

The COALESCHunction returns the first of its arguments that is not null. Null is returned only if
all arguments are null. This is often useful to substitute a default value for null values when data is
retrieved for display, for example:

SELECT COALESCE(description, short_description, '(none)’) ...

Like a CASEexpressionCOALESCHwill not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated.

9.12.3. NULLIF

NULLIF(valuel , value2)

TheNULLIF function returns a null value if and onlyvluel andvalue2 are equal. Otherwise it
returnsvaluel . This can be used to perform the inverse operation o€CtbeLESCExample given
above:

SELECT NULLIF(value, '(none)) ...

147

Chapter 9. Functions and Operators

9.13. Miscellaneous Functions

Table 9-35shows several functions that extract session and system information.

Table 9-35. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schema() name name of current schema

current_schemas(boolean) name(] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

session_user name session user name

user name equivalent tccurrent_user

version() text PostgreSQL version informatign

The session_user is the user that initiated a database connection; it is fixed for the duration of
that connection. Theurrent_user is the user identifier that is applicable for permission checking.
Normally, it is equal to the session user, but it changes during the execution of functions with the
attribute SECURITY DEFINER In Unix parlance, the session user is the “real user” and the current
user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must
be called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null
value if the search path is empty). This is the schema that will be used for any tables or other named
objects that are created without specifying a target scheuon@nt_schemas(boolean) returns

an array of the names of all schemas presently in the search path. The Boolean option determines
whether or not implicitly included system schemas suchgasatalog are included in the search

path returned.

Note: The search path may be altered at run time. The command is:

SET search_path TO schema [, schema, ..]

version() returns a string describing the PostgreSQL server’s version.

Table 9-36shows the functions available to query and alter run-time configuration parameters.

Table 9-36. Configuration Settings Functions

Name Return Type Description

148

Chapter 9. Functions and Operators

Name Return Type Description

text current value of setting
current_setting ('setting_name|)
set_config(setting_name text set parameter and return new
new_value , is_local) value
The functioncurrent_setting yields the current value of the settisgtting_name . It corre-

sponds to the SQL commaisHOWAN example:

SELECT current_setting('datestyle’);

current_setting

set_config sets the parameteetting_name tonew_value . If is_local istrue ,the new
value will only apply to the current transaction. If you want the new value to apply for the current
session, ustalse instead. The function corresponds to the SQL comn&# An example:

SELECT set_config('log_statement_stats’, 'off’, false);

set_config

Table 9-37lists functions that allow the user to query object access privileges programmatically. See
Section 5.7for more information about privileges.

Table 9-37. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user , |poolean does user have privilege for table
table , privilege)

has_table_privilege (table , [poolean does current user have privilege
privilege) for table

has_database_privilege (user jpoolean does user have privilege for
database , privilege) database

has_database_privilege (databhseelean does current user have privilege
privilege) for database

has_function_privilege (user poolean does user have privilege for
function , privilege) function

has_function_privilege (functibolean does current user have privilege
privilege) for function

has_language_privilege (user poolean does user have privilege for
language , privilege) language

149

Chapter 9. Functions and Operators

Name Return Type Description

has_language_privilege (langufagelean does current user have privilege
privilege) for language

has_schema_privilege ~ (user , [ooolean does user have privilege for

schema, privilege) schema

has_schema_privilege (' schemalpoolean does current user have privilege
privilege) for schema

has_table_privilege checks whether a user can access a table in a particular way. The user can

be specified by name or by I user.usesysid), or if the argument is omittecurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access priv-
ilege type is specified by a text string, which must evaluate to one of the VAEIEFCT, INSERT,

UPDATE DELETE RULE REFERENCESor TRIGGER (Case of the string is not significant, however.)

An example is:

SELECT has_table_privilege('myschema.mytable’, ’select’);

has_database_privilege checks whether a user can access a database in a particular way. The
possibilities for its arguments are analogoubds table_privilege . The desired access privilege
type must evaluate tOREATE TEMPORARYor TEMP(which is equivalent t@EMPORARY

has_function_privilege checks whether a user can access a function in a particular way. The
possibilities for its arguments are analogoubds table_privilege . When specifying a function

by a text string rather than by OID, the allowed input is the same as foegbeocedure data type.

The desired access privilege type must currently evalusgEXECUTE

has_language_privilege checks whether a user can access a procedural language in a particular
way. The possibilities for its arguments are analogots$otable_privilege . The desired access
privilege type must currently evaluate WSAGE

has_schema_privilege checks whether a user can access a schema in a particular way. The pos-
sibilities for its arguments are analogoushtss_table_privilege . The desired access privilege
type must evaluate tOREATEOr USAGE

To evaluate whether a user holds a grant option on the privilege, apperiti GRANT OPTIOKD
the privilege key word; for example&/PDATE WITH GRANT OPTION’

Table 9-38shows functions that determine whether a certain objedisible in the current schema

search path. A table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table
can be referenced by name without explicit schema qualification. For example, to list the names of all
visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 9-38. Schema Visibility Inquiry Functions

Name Return Type Description

150

Chapter 9. Functions and Operators

Name Return Type Description

pg_table_is_visible (table_oidjpoglean is table visible in search path

pg_type_is_visible (type_oid [poolean is type (or domain) visible in
search path

pg_function_is_visible (functipootédn) is function visible in search path

pg_operator_is_visible (operabmoleian) is operator visible in search path

pg_opclass_is_visible (opclas®auitkan) is operator class visible in search
path

pg_conversion_is_visible (conveottam oid) is conversion visible in search
path

pg_table_is_visible performs the check for tables (or views, or any other kinggfclass

entry). pg_type_is_visible , pg_function_is_visible , pg_operator_is_visible ,

pg_opclass_is_visible , andpg_conversion_is_visible perform the same sort of visibility

check for types (and domains), functions, operators, operator classes and conversions, respectively.
For functions and operators, an object in the search path is visible if there is no object of the same
nameand argument data type(ggrlier in the path. For operator classes, both nhame and associated
index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias typegclass , regtype , regprocedure
or regoperator), for example

SELECT pg_type_is_visible(myschema.widget’::regtype);

Note that it would not make much sense to test an unqualified name in this way --- if the name can be
recognized at all, it must be visible.

Table 9-39lists functions that extract information from the system catalpgsget viewdef
pg_get_ruledef , pg_get_indexdef , pg_get_triggerdef , andpg_get_constraintdef re-
spectively reconstruct the creating command for a view, rule, index, trigger, or constraint. (Note that
this is a decompiled reconstruction, not the original text of the command.) Most of these come in
two variants, one of which can optionally “pretty-print” the result. The pretty-printed format is more
readable, but the default format is more likely to be interpreted the same way by future versions of
PostgreSQL; avoid using pretty-printed output for dump purposes. Pdaising for the pretty-print
parameter yields the same result as the variant that does not have the parametey afeallexpr
decompiles the internal form of an individual expression, such as the default value for a column. It
may be useful when examining the contents of system catalggget userbyid extracts a user’s
name given a user ID number.

Table 9-39. System Catalog Information Functions

Name Return Type Description

pg_get viewdef (view_name) ftext getCREATE VIEWcommand for
view (deprecatell

pg_get_viewdef (view_name , ftext getCREATE VIEWcommand for

pretty_bool) \view (deprecatedl

151

Chapter 9. Functions and Operators

Name Return Type Description

pg_get viewdef (view_oid) ftext getCREATE VIEWcommand for
view

pg_get viewdef (view_oid , ftext getCREATE VIEWcommand for

pretty_bool) view

pg_get_ruledef (rule_oid) fext getCREATE RULEommand for
rule

pg_get_ruledef (rule_oid , fext getCREATE RULEommand for

pretty bool) rule

pg_get_indexdef (index_oid) ftext getCREATE INDExcommand
for index

pg_get_indexdef (index_oid , ftext getCREATE INDExcommand

column_no , pretty bool) for index, or definition of just

one index column when
column_no is not zero
pg_get_triggerdef (trigger_ofdxt) getCREATE [CONSTRAINT]
TRIGGERcommand for trigger

pg_get_constraintdef (constraifexbid) get definition of a constraint
pg_get_constraintdef (constraifexbid , get definition of a constraint
pretty bool)

pg_get_expr (expr_text text decompile internal form of an
relation_oid) expression, assuming that any|

\Vars in it refer to the relation
indicated by the second

parameter
pg_get _expr (expr_text text decompile internal form of an
relation_oid , expression, assuming that any|
pretty_bool) \Vars in it refer to the relation
indicated by the second
parameter
pg_get_userbyid (userid) name get user name with given 1D

The function shown ifTable 9-40extract comments previously stored with tt@MMENZommand.
A null value is returned if no comment could be found matching the specified parameters.

Table 9-40. Comment Information Functions

Name Return Type Description

obj_description (object_oid jext get comment for a database

catalog_name) object

obj_description (object_oid Jtext get comment for a database
object fleprecatejl

col_description (table_oid , ftext get comment for a table column

column_number)

The two-parameter form ofobj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,'pg_class’) would retrieve the comment for a table with OID

152

Chapter 9. Functions and Operators

123456. The one-parameter form afj_description requires only the object OID. It is how
deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment could be returned.

col_description returns the comment for a table column, which is specified by the OID of its
table and its column numbetbj_description cannot be used for table columns since columns do
not have OIDs of their own.

9.14. Array Functions and Operators

Table 9-41shows the operators available toray types.

Table 9-41.array Operators

Operator Description Example Result
= equal IARRAY[1.1,2.1,3.1]::int[] t
= ARRAY[1,2,3]
<> not equal ARRAY[1,2,3] <>
IARRAY([1,2,4]
< less than ARRAY[1,2,3] < t
IARRAY([1,2,4]
> greater than IARRAY[1,4,3] > t
IARRAY[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
IARRAYI[1,2,3]
>= greater than or equal |ARRAY[1,4,3] >= t
IARRAYI[1,4,3]
Il array-to-array IARRAY[1,2,3] || {1,2,3,4,5,6}
concatenation IARRAY[4,5,6]
I array-to-array IARRAY[1,2,3] || {{1,2,3},{4,5,6},{7,8,9}}
concatenation IARRAY([4,5,6],[7,8,9]]
Il element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation
Il array-to-element ARRAY[4,5,6] || 7 {4,5,6,7}
concatenation

SeeSection 8.1Gor more details about array operator behavior.

Table 9-42shows the functions available for use with array types. S&aion 8.1Gor more discus-
sion and examples for the use of these functions.

Table 9-42.array Functions

Function

Return Type

Description

Example

Result

array_cat
(anyarray ,
anyarray)

anyarray

concatenate two
arrays, returning
NULL for NULL
inputs

IARRAY[4,5])

array_cat(ARRAY[1/2.3,3,4,5}

153

Chapter 9. Functions and Operators

Function Return Type Description Example Result
array_append anyarray append an elemeptray_append(ARRAY[2,2},
(anyarray totheendofan [3)
anyelement) array, returning
NULL for NULL
inputs
array_prepend anyarray append an elemenirray_prepend(1, (1,2,3}
(anyelement to the beginning ofARRAY([2,3])
anyarray) an array, returning
NULL for NULL
inputs
array_dims text returns a text array_dims(array[[1,R132][1:3]
(anyarray) representation of [4,5,6]])
array dimension
lower and upper
bounds, generating
an ERROR for
NULL inputs
array_lower integer returns lower array_lower(array_pfepend(0,
(anyarray bound of the IARRAY[1,2,3]),
integer) requested array [1)
dimension,
returningNULL for
NULL inputs
array_upper integer returns upper array_upper(ARRAY41,2,3,4],
(anyarray bound of the 1)
integer) requested array
dimension,
returningNULL for
NULL inputs
array_to_string text concatenates arrggrray_to_string(arrafgt/~2~"~3
(anyarray , text) elementsusing 2, 3], ~*~)
provided delimiter,
returningNULL for
NULL inputs
string_to_array text(] splits string into [string_to_array({xx,yy,zz}
(text , text) array elements [xx~"~yy~"~zz’,
using provided [~"~)
delimiter, returning
NULL for NULL
inputs

9.15. Aggregate Functions

Aggregate functionsompute a single result value from a set of input valid@hle 9-43shows the
built-in aggregate functions. The special syntax considerations for aggregate functions are explained
in Section 4.2.7ConsultSection 2.7or additional introductory information.

154

Chapter 9. Functions and Operators

Table 9-43. Aggregate Functions

Function Argument Type Return Type Description

avg(expression) smallint ,integer , |numeric for any integethe average (arithmetic
bigint , real ,double type argumentjouble |mean) of all input values
precision , numeric , |precision for a
or interval floating-point argument,
otherwise the same as
the argument data type

count(*) bigint number of input values

count(expression) jany bigint number of input values
for which the value of
expression is not

null
max(expression) any numeric, string, or same as argument typemaximum value of
date/time type expression across all
input values
min(expression) any numeric, string, or [same as argument typeminimum value of
date/time type expression across all
input values
smallint ,integer , |double precision sample standard
stddev(expression) |pigint ,real ,double [for floating-point deviation of the input
precision , or arguments, otherwise values
numeric numeric
sum(expression) smallint ,integer , |bigint for smallint sum ofexpression

bigint ,real ,double |orinteger arguments,across all input values
precision , numeric , |numeric for bigint
or interval argumentsdouble
precision for

floating-point argument
otherwise the same as
the argument data type

»

smallint ,integer , |double precision sample variance of the

variance (expression pigint ,real ,double ffor floating-point input values (square of
precision , or arguments, otherwise the sample standard
numeric numeric deviation)

It should be noted that except fasunt , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. The functalesce may
be used to substitute zero for null when necessary.

Note: Users accustomed to working with other SQL database management systems may be
surprised by the performance characteristics of certain aggregate functions in PostgreSQL when
the aggregate is applied to the entire table (in other words, no WHEREclause is specified). In
particular, a query like

SELECT min(col) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table. Other database sys-
tems may optimize queries of this form to use an index on the column, if one is available. Similarly,
the aggregate functions max() and count() always require a sequential scan if applied to the en-
tire table in PostgreSQL.

155

Chapter 9. Functions and Operators

PostgreSQL cannot easily implement this optimization because it also allows for user-defined ag-
gregate queries. Since min() , max() , and count() are defined using a generic API for aggregate
functions, there is no provision for special-casing the execution of these functions under certain
circumstances.

Fortunately, there is a simple workaround for min() and max() . The query shown below is equiv-
alent to the query above, except that it can take advantage of a B-tree index if there is one present
on the column in question.

SELECT col FROM sometable ORDER BY col ASC LIMIT 1;

A similar query (obtained by substituting DESCfor ASCin the query above) can be used in the
place of max()).

Unfortunately, there is no similarly trivial query that can be used to improve the performance of
count() when applied to the entire table.

9.16. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

9.16.1. EXISTS

EXISTS (subquery)

The argument 0EXISTS is an arbitrarySELECTstatement, osubquery The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the reEXt9fS is “true”;
if the subquery returns no rows, the resulexfiSTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has any side effects (such
as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally uninteresting. A common coding convention is to
write all EXISTS tests in the formrEXISTS(SELECT 1 WHERE ...) . There are exceptions to this

rule however, such as subqueries thatIN§&ERSECT.

This simple example is like an inner join @nl2 , but it produces at most one output row for each
tabl row, even if there are multiple matchimap2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.16.2. IN

expression IN (subquery)

156

Chapter 9. Functions and Operators

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The nésust‘tfue” if

any equal subquery row is found. The result is “false” if no equal row is found (including the special
case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of tNeconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(expression [, expression) IN(subquery)

The right-hand side of this form dN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The resit isf“true” if any equal
subquery row is found. The result is “false” if no equal row is found (including the special case where
the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result ofN is null.

9.16.3. NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The K3TltINf

is “true” if only unequal subquery rows are found (including the special case where the subquery
returns no rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the®©T IN construct will be null, not true. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(‘expression [, expression ...]) NOT IN (subquery)

The right-hand side of this form ofOT INis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The resNDDfIN is “true” if only

unequal subqguery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result oNOT INis null.

157

Chapter 9. Functions and Operators

9.16.4. ANYSOME

expression operator ANY (subquery)
expression operator SOME 6ubquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using ttepghador

which must yield a Boolean result. The resuliofYis “true” if any true result is obtained. The result

is “false” if no true result is found (including the special case where the subquery returns no rows).

SOMEHS a synonym foANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANY construct will be null, not false. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(expression [, expression ..]) operator ~ ANY (subquery)
(expression [, expression)| operator SOME 6ubquery)

The right-hand side of this form iNYis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the gpezator . Presently,

only = and <> operators are allowed in row-wigeNY constructs. The result @NYis “true” if any

equal or unequal row is found, respectively. The result is “false” if no such row is found (including
the special case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the resaitxafannot be

false; it will be true or null.

9.16.5. ALL
expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using ttepgiator

which must yield a Boolean result. The resultAfL is “true” if all rows yield true (including the
special case where the subquery returns no rows). The result is “false” if any false result is found.

NOT INis equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result,
the result of theALL construct will be null, not true. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(expression [, expression) operator ALL (subquery)

The right-hand side of this form ofLL is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the gpezator . Presently,

only = and <> operators are allowed in row-wiseLL queries. The result oALL is “true” if all

158

Chapter 9. Functions and Operators

subquery rows are equal or unequal, respectively (including the special case where the subquery
returns no rows). The result is “false” if any row is found to be unequal or equal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the resillt afannot be

true; it will be false or null.

9.16.6. Row-wise Comparison
(‘expression [, expression) operator ('subquery)

The left-hand side is a list of scalar expressions. The right-hand side is a parenthesized subquery,
which must return exactly as many columns as there are expressions on the left-hand side. Further-
more, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.
Presently, only= and <> operators are allowed in row-wise comparisons. The result is “true” if the
two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

9.17. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)

results.
9.17.1. IN
expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of ittheconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

159

Chapter 9. Functions and Operators

9.17.2. NOT IN
expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of’@T IN construct will be null, not true as one
might naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null
values.

Tip: x NOT IN y is equivalentto NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN. It's best to
express your condition positively if possible.

9.17.3. ANYSOMHarray)

expression operator ANY (array expression)
expression operator SOME f@rray expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using thepgiiagor , which

must yield a Boolean result. The resultaflYis “true” if any true result is obtained. The result is
“false” if no true result is found (including the special case where the array has zero elements).

SOMES a synonym foANY.

9.17.4. ALL (array)
expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using trepgirstor , which

must yield a Boolean result. The resultAfL is “true” if all comparisons yield true (including the
special case where the array has zero elements). The result is “false” if any false result is found.

9.17.5. Row-wise Comparison

(‘expression [, expression) operator (expression [[expression)

160

Chapter 9. Functions and Operators

Each side is a list of scalar expressions; the two lists must be of the same length. Each side is eval-
uated and they are compared row-wise. Presently, o@igd <> operators are allowed in row-wise
comparisons. The result is “true” if the two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

161

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. How-
ever, the implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by a user or programmer egjplirit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections i€hapter 8andChapter Yor more information on specific data types and allowed
functions and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which deter-
mines its behavior and allowed usage. PostgreSQL has an extensible type system that is much more
general and flexible than other SQL implementations. Hence, most type conversion behavior in Post-
greSQL should be governed by general rules rather thasdblyocheuristics, to allow mixed-type
expressions to be meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: inte-
gers, floating-point numbers, strings, names, and key words. Constants of most non-numeric types are
first classified as strings. The SQL language definition allows specifying type names with strings, and

this mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the

query
SELECT text 'Origin’ AS "label", point '(0,0)’ AS "value";

label | value
________ R

Origin | (0,0)
(1 row)

has two literal constants, of typext andpoint . If a type is not specified for a string literal, then

the placeholder typenknown is assigned initially, to be resolved in later stages as described below.
There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators.

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls can
have one or more arguments. Since PostgreSQL permits function overloading, the function name
alone does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.

Value Storage

SQL INSERT andUPDATEstatements place the results of expressions into a table. The expres-
sions in the statement must be matched up with, and perhaps converted to, the types of the target
columns.

162

Chapter 10. Type Conversion

UNION CASE andARRAYconstructs

Since all query results from a unioniz&ELECT statement must appear in a single set of
columns, the types of the results of e&#L ECTclause must be matched up and converted to a
uniform set. Similarly, the branch expressions o€ASE construct must be converted to a
common type so that theASEexpression as a whole has a known output type. The same holds
for ARRAYconstructs.

The system catalogs store information about which conversions, calgg between data types are
valid, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CASTommand. (This is usually done in conjunction with defining new data types. The set
of casts between the built-in types has been carefully crafted and is best not altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL
standard types. There are several bdgjpe categoriesdefined: boolean , numeric , string

bitstring , datetime , timespan , geometric , network , and user-defined. Each category, with

the exception of user-defined, has one or npegerred typesvhich are preferentially selected when
there is ambiguity. In the user-defined category, each type is its own preferred type. Ambiguous
expressions (those with multiple candidate parsing solutions) can therefore often be resolved when
there are multiple possible built-in types, but they will raise an error when there are multiple choices
for user-defined types.

All type conversion rules are designed with several principles in mind:

- Implicit conversions should never have surprising or unpredictable outcomes.

« User-defined types, of which the parser hasarpriori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type
(of course, only if conversion is necessary).

- User-defined types are not related. Currently, PostgreSQL does not have information available to
it on relationships between types, other than hardcoded heuristics for built-in types and implicit
relationships based on available functions and casts.

- There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query
should proceed without spending extra time in the parser and without introducing unnecessary
implicit conversion calls into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and
will no longer do the implicit conversion using the old function.

10.2. Operators

The specific operator to be used in an operator invocation is determined by following the procedure
below. Note that this procedure is indirectly affected by the precedence of the involved operators. See
Section 4.1.6or more information.

163

Chapter 10. Type Conversion
Operator Type Resolution

1. Select the operators to be considered fromgipeoperator ~ system catalog. If an unqualified
operator name was used (the usual case), the operators considered are those of the right name
and argument count that are visible in the current search pattSésgimn 5.8.R If a qualified
operator name was given, only operators in the specified schema are considered.

a. |If the search path finds multiple operators of identical argument types, only the one
appearing earliest in the path is considered. But operators of different argument types
are considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of tintnown type, then assume it
is the same type as the other argument for this check. Other cases inuotkingvn
will never find a match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be con-
verted (using an implicit conversion) to mateiknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have any exact matches. If only one candidate remains, use it; else continue
to the next step.

c. Runthrough all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments arenknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, selestritite
category if any candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal does look like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type at a given argument position, discard candidates that accept non-preferred
types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Some examples follow.

Example 10-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes arguments of type
double precision . The scanner assigns an initial typeraéger to both arguments of this query
expression:

SELECT 2 * 3 AS "exp";

164

Chapter 10. Type Conversion

(1 row)
So the parser does a type conversion on both operands and the query is equivalent to
SELECT CAST(2 AS double precision) » CAST(3 AS double precision) AS "exp";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex exten-
sion types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:
SELECT text 'abc’ || 'def AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator takihgfor both arguments. Since there
is, it assumes that the second argument should be interpreted as aixtype

Here is a concatenation on unspecified types:
SELECT ’abc’ || 'def AS "unspecified";

unspecified

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the preferred type for striagss,, is used as the specific type to
resolve the unknown literals to.

Example 10-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix op@raltaf which implement
absolute-value operations for various numeric data types. One of these entries is fiwatyge,

which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with a non-numeric input:

SELECT @ '-4.5° AS "abs";
abs

4.5

(1 row)
Here the system has performed an implicit conversion ftexn to float8 before applying the
chosen operator. We can verify thiaat8 and not some other type was used:

SELECT @ '-4.5e500" AS "abs";

165

Chapter 10. Type Conversion

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the postfix operato(factorial) is defined only for integer data types, not for
float8 . So, if we try a similar case with, we get:

SELECT '20’ ! AS "factorial";

ERROR: operator is not unique: "unknown" !

HINT: Could not choose a best candidate operator. You may need to add explicit

type casts.
This happens because the system can’t decide which of the several possjigeators should be
preferred. We can help it out with an explicit cast:

SELECT CAST('20' AS int8) ! AS “factorial;

factorial

2432902008176640000
1 row)

10.3. Functions

The specific function to be used in a function invocation is determined according to the following
steps.

Function Type Resolution

1. Selectthe functions to be considered fromgheproc system catalog. If an unqualified function
name was used, the functions considered are those of the right name and argument count that are
visible in the current search path (sgection 5.8.3 If a qualified function name was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. But functions of different argument types
are considered on an equal footing regardless of search path position.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of functions considered), use it. (Cases invahkngwn will never
find a match at this step.)

3. If no exact match is found, see whether the function call appears to be a trivial type conversion
request. This happens if the function call has just one argument and the function name is the same
as the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal or a type that is binary-compatible with the named data type. When these
conditions are met, the function argument is converted to the named data type without any actual
function call.

4. Look for the best match.
a. Discard candidate functions for which the input types do not match and cannot be con-
verted (using an implicit conversion) to matcinknown literals are assumed to be con-

vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

166

Chapter 10. Type Conversion

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have any exact matches. If only one candidate remains, use it; else continue
to the next step.

c. Runthrough all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments arenknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, selestritite
category if any candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal does look like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type at a given argument position, discard candidates that accept non-preferred
types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some exam-
ples follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only oneound function with two arguments. (The firstismeric , the second igiteger)

So the following query automatically converts the first argument of iyeger to numeric :
SELECT round(4, 4);

(1 row)
That query is actually transformed by the parser to
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned thentyperic , the following
guery will require no type conversion and may therefore be slightly more efficient:

SELECT round(4.0, 4);

Example 10-5. Substring Function Type Resolution

There are severaubstr functions, one of which takes type&sxt andinteger . If called with a
string constant of unspecified type, the system chooses the candidate function that accepts an argu-
ment of the preferred categosyring (namely of typeext).

SELECT substr('1234’, 3);

167

Chapter 10. Type Conversion

34
(2 row)

If the string is declared to be of typarchar , as might be the case if it comes from a table, then the
parser will try to convert it to becontext :

SELECT substr(varchar '1234’, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become
SELECT substr(CAST (varchar '1234" AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with an argument of tyjpeeger , the parser will try to convert that to
text :

SELECT substr(1234, 3);

(1 row)
This actually executes as

SELECT substr(CAST (1234 AS text), 3);
This automatic transformation can succeed because there is an implicitly invocable cast from
integer totext .

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. If the target is a fixed-length type (e.ghar or varchar declared with a length) then try to
find a sizing function for the target type. A sizing function is a function of the same name as the
type, taking two arguments of which the first is that type and the second is ofitgger , and
returning the same type. If one is found, it is applied, passing the column’s declared length as the
second parameter.

168

Chapter 10. Type Conversion
Example 10-6.character ~ Storage Type Conversion

For a target column declared@saracter(20) the following statement ensures that the stored value
is sized correctly:

CREATE TABLE wv (v character(20));
INSERT INTO vv SELECT ’abc’ || ’def;
SELECT v, length(v) FROM wv;

\Y | length

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolvext toby default,
allowing the|| operator to be resolved &t concatenation. Then thext result of the operator is
converted tdopchar (“blank-padded char”, the internal name of taracter data type) to match

the target column type. (Since the typest andbpchar are binary-compatible, this conversion
does not insert any real function call.) Finally, the sizing functipohar(bpchar, integer) is

found in the system catalog and applied to the operator’s result and the stored column length. This
type-specific function performs the required length check and addition of padding spaces.

10.5. UNION CASE and ARRAYConstructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union queriNTEBRSECT

and EXCEPTconstructs resolve dissimilar types in the same wayrON The CASEand ARRAY
constructs use the identical algorithm to match up their component expressions and select a result
data type.

UNION CASE and ARRAYType Resolution

1. [Ifallinputs are of typainknown , resolve as typext (the preferred type of the string category).
Otherwise, ignore thanknown inputs while choosing the result type.

2. Ifthe non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all
the non-unknown inputs to be implicitly converted to it.

4. Convert all inputs to the selected type.

Some examples follow.

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text 'a’ AS "text" UNION SELECT 'b’;

(2 rows)
Here, the unknown-type literdd” will be resolved as typext .

169

Chapter 10. Type Conversion

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2
(2 rows)
The literal1.2 is of typenumeric , and theinteger valuel can be cast implicitly tmumeric , so
that type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS 'real” UNION SELECT CAST(2.2" AS REAL);

(2 rows)
Here, since typeeal cannot be implicitly cast tinteger , butinteger can be implicitly cast to
real , the union result type is resolved @al .

170

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content varchar

)i
and the application requires a lot of queries of the form

SELECT content FROM testl WHERE id = constant

With no advance preparation, the system would have to scan the estire table, row by row, to

find all matching entries. If there are a lot of rowstéistl and only a few rows (perhaps only zero

or one) that would be returned by such a query, then this is clearly an inefficient method. But if the
system has been instructed to maintain an index ordtheolumn, then it can use a more efficient
method for locating matching rows. For instance, it might only have to walk a few levels deep into a
search tree.

A similar approach is used in most books of non-fiction: terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can
scan the index relatively quickly and flip to the appropriate page(s), rather than having to read the
entire book to find the material of interest. Just as it is the task of the author to anticipate the items
that the readers are most likely to look up, it is the task of the database programmer to foresee which
indexes would be of advantage.

The following command would be used to create the index omdtheolumn, as discussed:
CREATE INDEX testl_id_index ON testl (id);

The nameestl_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use tHEROP INDEXcommand. Indexes can be added to and removed from
tables at any time.

Once the index is created, no further intervention is required: the system will update the index when
the table is modified, and it will use the index in queries when it thinks this would be more efficient
than a sequential table scan. But you may have to rurAti¥e YZEcommand regularly to update
statistics to allow the query planner to make educated decisionsCBagter 13for information

about how to find out whether an index is used and when and why the planner may ohtisese

an index.

Indexes can also benetiPDATEandDELETEcommands with search conditions. Indexes can more-
over be used in join queries. Thus, an index defined on a column that is part of a join condition can
significantly speed up queries with joins.

171

Chapter 11. Indexes

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should
be removed. Note that a query or data manipulation command can use at most one index per table.

11.2. Index Types

PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type uses a dif-
ferent algorithm that is best suited to different types of queries. By defaullREATE INDEXcom-

mand will create a B-tree index, which fits the most common situations. B-trees can handle equality
and range queries on data that can be sorted into some ordering. In particular, the PostgreSQL query
planner will consider using a B-tree index whenever an indexed column is involved in a comparison
using one of these operators; <=, =, >=, >

The optimizer can also use a B-tree index for queries involving the pattern matching opeitéiors
ILIKE , ~, and~*, if the pattern is anchored to the beginning of the string, €of.LIKE *foo%’

or col ~ oo’ , but notcol LIKE '%bar . However, if your server does not use the C locale
you will need to create the index with a special operator classS8etion 11.6elow.

R-tree indexes are suited for queries on spatial data. To create an R-tree index, use a command of the
form

CREATE INDEXname ON table USING RTREE ¢olumn);

The PostgreSQL query planner will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators: &<, &>, >>, @ ~=, && (Refer toSection
9.9about the meaning of these operators.)

Hash indexes can only handle simple equality comparisons. The query planner will consider using
a hash index whenever an indexed column is involved in a comparison usingdperator. The
following command is used to create a hash index:

CREATE INDEXname ON table USING HASH ¢olumn);

Note: Testing has shown PostgreSQL’s hash indexes to perform no better than B-tree indexes,
and the index size and build time for hash indexes is much worse. For these reasons, hash index
use is presently discouraged.

The B-tree index method is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree
index method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index
method is an implementation of Litwin’s linear hashing. We mention the algorithms used solely to
indicate that all of these index methods are fully dynamic and do not have to be optimized periodically
(as is the case with, for example, static hash methods).

11.3. Multicolumn Indexes
An index can be defined on more than one column. For example, if you have a table of this form:
CREATE TABLE test2 (

major int,
minor int,

172

Chapter 11. Indexes

name varchar

);
(say, you keep youdev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major =constant AND minor = constant

then it may be appropriate to define an index on the columajsr andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32
columns may be specified. (This limit can be altered when building PostgreSQL; see the file
pg_config_manual.h)

The query planner can use a multicolumn index for queries that involve the leftmost column in the
index definition plus any number of columns listed to the right of it, without a gap. For example, an
indexon(a, b, ¢) can be usedin queries involving allafb, andc, or in queries involving both

andb, or in queries involving only, but not in other combinations. (In a query involviagndc the

planner could choose to use the indexdophile treatingc like an ordinary unindexed column.) Of
course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes can only be used if the clauses involving the indexed columns are joined with
AND For instance,

SELECT name FROM test2 WHERE major =constant OR minor = constant ;
cannot make use of the indest2_mm_idx defined above to look up both columns. (It can be used
to look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful
unless the usage of the table is extremely stylized.

11.4. Unique Indexes

Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the com-
bined values of more than one column.

CREATE UNIQUE INDEXhame ON table (column [, ..]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all of
the indexed columns are equal in two rows.

PostgreSQL automatically creates a unique index when a unique constraint or a primary key is de-
fined for a table. The index covers the columns that make up the primary key or unique columns (a
multicolumn index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD
CONSTRAINT The use of indexes to enforce unique constraints could be considered an
implementation detail that should not be accessed directly. One should, however, be aware that

173

Chapter 11. Indexes

there’s no need to manually create indexes on unigue columns; doing so would just duplicate the
automatically-created index.

11.5. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast
access to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to usedhefunction:

SELECT * FROM testl WHERE lower(coll) = ’value’;

This query can use an index, if one has been defined on the resultloftitecoll) operation:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

If we were to declare this inde3NIQUE, it would prevent creation of rows whosell values differ
only in case, as well as rows whosall values are actually identical. Thus, indexes on expressions
can be used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like this:
SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || * ' || last_name));

The syntax of theCREATE INDEXcommand normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses may be omitted when the expression
is just a function call, as in the first example.

Index expressions are relatively expensive to maintain, since the derived expression(s) must be com-
puted for each row upon insertion or whenever it is updated. Therefore they should be used only when
gueries that can use the index are very frequent.

11.6. Operator Classes
An index definition may specify aoperator clasgor each column of an index.

CREATE INDEXname ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the typmt4 would use thent4_ops class; this operator class includes comparison
functions for values of typ@t4 . In practice the default operator class for the column’s data type is
usually sufficient. The main point of having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this