Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it. | |
| Brian Kernighan |
The Bash shell contains no debugger, nor even any debugging-specific commands or constructs. [1] Syntax errors or outright typos in the script generate cryptic error messages that are often of no help in debugging a non-functional script.
Example 30-1. A buggy script
1 #!/bin/bash 2 # ex74.sh 3 4 # This is a buggy script. 5 # Where, oh where is the error? 6 7 a=37 8 9 if [$a -gt 27 ] 10 then 11 echo $a 12 fi 13 14 exit 0 |
Output from script:
./ex74.sh: [37: command not found |
Example 30-2. Missing keyword
1 #!/bin/bash 2 # missing-keyword.sh: What error message will this generate? 3 4 for a in 1 2 3 5 do 6 echo "$a" 7 # done # Required keyword 'done' commented out in line 7. 8 9 exit 0 |
Output from script:
missing-keyword.sh: line 10: syntax error: unexpected end of file |
Error messages may disregard comment lines in a script when reporting the line number of a syntax error.
What if the script executes, but does not work as expected? This is the all too familiar logic error.
Example 30-3. test24, another buggy script
1 #!/bin/bash 2 3 # This script is supposed to delete all filenames in current directory 4 #+ containing embedded spaces. 5 # It doesn't work. 6 # Why not? 7 8 9 badname=`ls | grep ' '` 10 11 # Try this: 12 # echo "$badname" 13 14 rm "$badname" 15 16 exit 0 |
Try to find out what's wrong with Example 30-3 by uncommenting the echo "$badname" line. Echo statements are useful for seeing whether what you expect is actually what you get.
In this particular case, rm "$badname" will not give the desired results because $badname should not be quoted. Placing it in quotes ensures that rm has only one argument (it will match only one filename). A partial fix is to remove to quotes from $badname and to reset $IFS to contain only a newline, IFS=$'\n'. However, there are simpler ways of going about it.
1 # Correct methods of deleting filenames containing spaces. 2 rm *\ * 3 rm *" "* 4 rm *' '* 5 # Thank you. S.C. |
Summarizing the symptoms of a buggy script,
It bombs with a "syntax error" message, or
It runs, but does not work as expected (logic error).
It runs, works as expected, but has nasty side effects (logic bomb).
Tools for debugging non-working scripts include
echo statements at critical points in the script to trace the variables, and otherwise give a snapshot of what is going on.
using the tee filter to check processes or data flows at critical points.
setting option flags -n -v -x
sh -n scriptname checks for syntax errors without actually running the script. This is the equivalent of inserting set -n or set -o noexec into the script. Note that certain types of syntax errors can slip past this check.
sh -v scriptname echoes each command before executing it. This is the equivalent of inserting set -v or set -o verbose in the script.
The -n and -v flags work well together. sh -nv scriptname gives a verbose syntax check.
sh -x scriptname echoes the result each command, but in an abbreviated manner. This is the equivalent of inserting set -x or set -o xtrace in the script.
Inserting set -u or set -o nounset in the script runs it, but gives an unbound variable error message at each attempt to use an undeclared variable.
Using an "assert" function to test a variable or condition at critical points in a script. (This is an idea borrowed from C.)
Example 30-4. Testing a condition with an "assert"
1 #!/bin/bash
2 # assert.sh
3
4 assert () # If condition false,
5 { #+ exit from script with error message.
6 E_PARAM_ERR=98
7 E_ASSERT_FAILED=99
8
9
10 if [ -z "$2" ] # Not enough parameters passed.
11 then
12 return $E_PARAM_ERR # No damage done.
13 fi
14
15 lineno=$2
16
17 if [ ! $1 ]
18 then
19 echo "Assertion failed: \"$1\""
20 echo "File \"$0\", line $lineno"
21 exit $E_ASSERT_FAILED
22 # else
23 # return
24 # and continue executing script.
25 fi
26 }
27
28
29 a=5
30 b=4
31 condition="$a -lt $b" # Error message and exit from script.
32 # Try setting "condition" to something else,
33 #+ and see what happens.
34
35 assert "$condition" $LINENO
36 # The remainder of the script executes only if the "assert" does not fail.
37
38
39 # Some commands.
40 # ...
41 echo "This statement echoes only if the \"assert\" does not fail."
42 # ...
43 # Some more commands.
44
45 exit 0 |
trapping at exit.
The exit command in a script triggers a signal 0, terminating the process, that is, the script itself. [2] It is often useful to trap the exit, forcing a "printout" of variables, for example. The trap must be the first command in the script.
Specifies an action on receipt of a signal; also useful for debugging.
1 trap '' 2 2 # Ignore interrupt 2 (Control-C), with no action specified. 3 4 trap 'echo "Control-C disabled."' 2 5 # Message when Control-C pressed. |
Example 30-5. Trapping at exit
1 #!/bin/bash 2 # Hunting variables with a trap. 3 4 trap 'echo Variable Listing --- a = $a b = $b' EXIT 5 # EXIT is the name of the signal generated upon exit from a script. 6 # 7 # The command specified by the "trap" doesn't execute until 8 #+ the appropriate signal is sent. 9 10 echo "This prints before the \"trap\" --" 11 echo "even though the script sees the \"trap\" first." 12 echo 13 14 a=39 15 16 b=36 17 18 exit 0 19 # Note that commenting out the 'exit' command makes no difference, 20 #+ since the script exits in any case after running out of commands. |
Example 30-6. Cleaning up after Control-C
1 #!/bin/bash 2 # logon.sh: A quick 'n dirty script to check whether you are on-line yet. 3 4 5 TRUE=1 6 LOGFILE=/var/log/messages 7 # Note that $LOGFILE must be readable 8 #+ (as root, chmod 644 /var/log/messages). 9 TEMPFILE=temp.$$ 10 # Create a "unique" temp file name, using process id of the script. 11 KEYWORD=address 12 # At logon, the line "remote IP address xxx.xxx.xxx.xxx" 13 # appended to /var/log/messages. 14 ONLINE=22 15 USER_INTERRUPT=13 16 CHECK_LINES=100 17 # How many lines in log file to check. 18 19 trap 'rm -f $TEMPFILE; exit $USER_INTERRUPT' TERM INT 20 # Cleans up the temp file if script interrupted by control-c. 21 22 echo 23 24 while [ $TRUE ] #Endless loop. 25 do 26 tail -$CHECK_LINES $LOGFILE> $TEMPFILE 27 # Saves last 100 lines of system log file as temp file. 28 # Necessary, since newer kernels generate many log messages at log on. 29 search=`grep $KEYWORD $TEMPFILE` 30 # Checks for presence of the "IP address" phrase, 31 #+ indicating a successful logon. 32 33 if [ ! -z "$search" ] # Quotes necessary because of possible spaces. 34 then 35 echo "On-line" 36 rm -f $TEMPFILE # Clean up temp file. 37 exit $ONLINE 38 else 39 echo -n "." # The -n option to echo suppresses newline, 40 #+ so you get continuous rows of dots. 41 fi 42 43 sleep 1 44 done 45 46 47 # Note: if you change the KEYWORD variable to "Exit", 48 #+ this script can be used while on-line 49 #+ to check for an unexpected logoff. 50 51 # Exercise: Change the script, per the above note, 52 # and prettify it. 53 54 exit 0 55 56 57 # Nick Drage suggests an alternate method: 58 59 while true 60 do ifconfig ppp0 | grep UP 1> /dev/null && echo "connected" && exit 0 61 echo -n "." # Prints dots (.....) until connected. 62 sleep 2 63 done 64 65 # Problem: Hitting Control-C to terminate this process may be insufficient. 66 #+ (Dots may keep on echoing.) 67 # Exercise: Fix this. 68 69 70 71 # Stephane Chazelas has yet another alternative: 72 73 CHECK_INTERVAL=1 74 75 while ! tail -1 "$LOGFILE" | grep -q "$KEYWORD" 76 do echo -n . 77 sleep $CHECK_INTERVAL 78 done 79 echo "On-line" 80 81 # Exercise: Discuss the relative strengths and weaknesses 82 # of each of these various approaches. |
Of course, the trap command has other uses aside from debugging.
Example 30-8. Running multiple processes (on an SMP box)
1 #!/bin/bash
2 # multiple-processes.sh: Run multiple processes on an SMP box.
3
4 # Script written by Vernia Damiano.
5 # Used with permission.
6
7 # Must call script with at least one integer parameter
8 #+ (number of concurrent processes).
9 # All other parameters are passed through to the processes started.
10
11
12 INDICE=8 # Total number of process to start
13 TEMPO=5 # Maximum sleep time per process
14 E_BADARGS=65 # No arg(s) passed to script.
15
16 if [ $# -eq 0 ] # Check for at least one argument passed to script.
17 then
18 echo "Usage: `basename $0` number_of_processes [passed params]"
19 exit $E_BADARGS
20 fi
21
22 NUMPROC=$1 # Number of concurrent process
23 shift
24 PARAMETRI=( "$@" ) # Parameters of each process
25
26 function avvia() {
27 local temp
28 local index
29 temp=$RANDOM
30 index=$1
31 shift
32 let "temp %= $TEMPO"
33 let "temp += 1"
34 echo "Starting $index Time:$temp" "$@"
35 sleep ${temp}
36 echo "Ending $index"
37 kill -s SIGRTMIN $$
38 }
39
40 function parti() {
41 if [ $INDICE -gt 0 ] ; then
42 avvia $INDICE "${PARAMETRI[@]}" &
43 let "INDICE--"
44 else
45 trap : SIGRTMIN
46 fi
47 }
48
49 trap parti SIGRTMIN
50
51 while [ "$NUMPROC" -gt 0 ]; do
52 parti;
53 let "NUMPROC--"
54 done
55
56 wait
57 trap - SIGRTMIN
58
59 exit $?
60
61 : <<SCRIPT_AUTHOR_COMMENTS
62 I had the need to run a program, with specified options, on a number of
63 different files, using a SMP machine. So I thought [I'd] keep running
64 a specified number of processes and start a new one each time . . . one
65 of these terminates.
66
67 The "wait" instruction does not help, since it waits for a given process
68 or *all* process started in background. So I wrote [this] bash script
69 that can do the job, using the "trap" instruction.
70 --Vernia Damiano
71 SCRIPT_AUTHOR_COMMENTS |
![]() | trap '' SIGNAL (two adjacent apostrophes) disables SIGNAL for the remainder of the script. trap SIGNAL restores the functioning of SIGNAL once more. This is useful to protect a critical portion of a script from an undesirable interrupt. |
1 trap '' 2 # Signal 2 is Control-C, now disabled. 2 command 3 command 4 command 5 trap 2 # Reenables Control-C 6 |
Version 3 of Bash adds the following special variables for use by the debugger.
|
| [1] | Rocky Bernstein's Bash debugger partially makes up for this lack. |
| [2] | By convention, signal 0 is assigned to exit. |