
6 Bayesian Classification(AutoClass): Theory and ResultsPeter CheesemanRIACSJohn StutzNASA AbstractWe describe AutoClass, an approach to unsupervised classi�cation based upon the classicalmixture model, supplemented by a Bayesian method for determining the optimal classes. Weinclude a moderately detailed exposition of the mathematics behind the AutoClass system.We emphasize that no current unsupervised classi�cation system can produce maximallyuseful results when operated alone. It is the interaction between domain experts and the machinesearching over the model space, that generates new knowledge. Both bring unique informationand abilities to the database analysis task, and each enhances the others' e�ectiveness. Weillustrate this point with several applications of AutoClass to complex real world databases, anddescribe the resulting successes and failures.6.1 IntroductionThis chapter is a summary of our experience in using an automatic classi�cation pro-gram (AutoClass) to extract useful information from databases. It also gives an outlineof the principles that underlie automatic classi�cation in general, and AutoClass in par-ticular. We are concerned with the problem of automatic discovery of classes in data(sometimes called clustering, or unsupervised learning), rather than the generation ofclass descriptions from labeled examples (called supervised learning). In some sense, au-tomatic classi�cation aims at discovering the \natural" classes in the data. These classesre
ect basic causal mechanisms that makes some cases look more like each other thanthe rest of the cases. The causal mechanisms may be as boring as sample biases in thedata, or could re
ect some major new discovery in the domain. Sometimes, these classeswere well known to experts in the �eld, but unknown to AutoClass, and other times



62 Cheeseman & Stutzthe classes were a surprise to the experts because they revealed something importantabout the domain that was previously unknown. Such discovery of previously unknownstructure occurs most frequently when there are many relevant attributes describing eachcase, because humans are poor at seeing structure in a large number of dimensions.We wish to emphasize that the discovery of important structure (classes) in data israrely a one-shot process of throwing some database at AutoClass (or similar program)and getting back something useful. Instead, discovery of important structure is usuallya process of �nding classes, interpreting the results, transforming and/or augmenting thedata, and repeating the cycle. In other words, the process of discovery of structure indatabases is an example of the well known hypothesize-and-test cycle of normal scienti�cdiscovery. We believe that a strong interaction between the discovery program and theexpert will be the common pattern in Knowledge Discovery in Databases (KDD) for theforeseeable future, because each have complementary strengths. A structure searchingprogram like AutoClass can search huge amounts of data looking for multi-dimensionalstructures with a speed and accuracy that no human could hope to match. An expert,on the other hand, has domain knowledge that the program lacks. This enables theexpert to interpret the results of the search in a way that computers cannot. Knowledgediscovery is then an interactive process that involves �nding patterns, interpreting them,generating new hypothesis, getting more data and then repeating the process. We shallillustrate this process through case studies from our experience in using AutoClass.We �rst give a quick outline of what AutoClass does and how it does it, followed bya more detailed description of the theory and details. We then give a number of casestudies of AutoClass in action.6.2 Bayesian Classi�cationThe word \classi�cation" is ambiguous. Often it means assigning a new object/case toone of an existing set of possible classes. As used in this paper, however, it means �ndingthe classes themselves from a given set of \unclassi�ed" objects/cases (unsupervisedclassi�cation). Once such a set of classes has been found, they can be the basis forclassifying new cases in the �rst sense.In the Bayesian approach to unsupervised classi�cation, the goal is to �nd the mostprobable set of class descriptions (a classi�cation) given the data and prior expectations.The introduction of priors automatically enforces a tradeo� between the �t to the dataand the complexity of the class descriptions, giving an automatic form of Occam's razor(section 6.3.4). Alternate approaches, such as maximum likelihood, that try to �ndthe class descriptions that best predict the data, have trouble because the best such



Bayesian Classi�cation (AutoClass): Theory and Results 63X = fX1; : : : ; XIg the set data instances Xi~Xi = fXi1; : : : ; XiKg the vector of attribute values Xik, describing instance Xii indexes instances, i = 1; : : : ; Ij indexes classes, j = 1; : : : ; Jk indexes attributes, k = 1; : : : ;Kl indexes discrete attribute values, l = 1; : : : ; Lc indicates inter-class probabilities & parametersS denotes the space of allowed p.d.f.'s ~V ; TT = Tc; T1; : : : ; TJ denotes the abstract mathematical form of the p.d.f.~V = ~Vc; ~V1; : : : ; ~VJ denotes the set of parameter values instantiating a p.d.f.�j class mixture probability, ~Vc = f�1; : : : ; �JgI implicit information not speci�cally representedTable 6.1Symbols used in this paper.classi�cation is a set of single case classes, perfectly �tting each case, with a class foreach unique case. This extreme \classi�cation" has little predictive power for new cases.6.2.1 AutoClass Model OverviewWe limit ourselves to data for which instances can be represented as ordered vectors ofattribute values. In principle, each attribute represents a measurement of some instanceproperty common to all instances. These are \simple" properties in the sense that theycan be represented by single measurements: discrete values such as \true" or \false", orinteger values, or real numbers. For example, medical case #8, described as (age = 23,blood-type = A, weight = 73.4kg, ...) would have X8;1 = 23, X8;2 = A, etc. We make noattempt to deal with relational data where attributes, such as \married-to", have valuesthat are other instances. Note however, that these limitations are solely a property ofour speci�c method of modeling classes, and could be overcome by using more expressivemodels.In discussing a probabilistic model, we refer to a probability distribution or densityfunction (p.d.f.) that gives the probability of observing an instance possessing any par-ticular attribute value vector. Ideally, such a model would take into account everythingknown about the processes potentially involved in generating and observing an instance.A Bayes Net relating input and output attributes would be suitable for instances of awell-understood process. For general KDD systems like AutoClass, where little is knownabout underlying processes, relatively simple statistical models are used.



64 Cheeseman & StutzProbabilistic models invariably contain free parameters, such as Bernoulli probabil-ities or the Gaussian mean and variance, which must either be �xed or removed (byintegration) before instance probabilities can be computed. Thus it is useful distinguishbetween the p.d.f.'s functional form and its parameter values, and we denote these byT and ~V respectively. S will denote the space of allowed p.d.f.'s ~V ; T , while I denotesimplicit information not speci�cally represented.For AutoClass, our fundamental model is the classical �nite mixture distribution. Thisis a two part model. The �rst gives the interclass mixture probability that an instanceXi is a member of class Cj , independently of anything else we may know of the instance:P(Xi 2 Cj j ~Vc; Tc; S; I). The interclass p.d.f. Tc is a Bernoulli distribution characterizedby the class number J and the probabilities of ~Vc. Each class Cj is then modeled by aclass p.d.f., P( ~Xi jXi 2 Cj ; ~Vj; Tj; S;I), giving the probability of observing the instanceattribute values ~Xi conditional on the assumption that instance Xi belongs in classCj. The class p.d.f. Tj is a product of individual or covariant attribute p.d.f.'s Tjk;e.g. Bernoulli distributions for nominal attributes, Gaussian densities for real numbers,Poisson distributions for number counts, etc. It is not necessary that the various Tj beidentical, only that they all model the same subset of the instance attributes.We di�er from most other classi�ers in that we never assign any instances to theclasses. Instead we use a weighted assignment, weighting on the probability of classmembership: P( ~Xi; Xi 2 Cj j ~Vj ; Tj; S;I). We hold that no �nite amount of evidencecan determine an instance's class membership. We further hold that the classi�cationp.d.f. T and parameter values ~V constitute a more informative class description than anyset of instance assignments. As a practical matter, the weighted assignment approacheliminates the brittle behavior that boundary surface instances can induce in classi�cationsystems that decide assignments. More importantly, it allows any user to apply decisionrules appropriate to that user's current goals.6.2.2 AutoClass Search OverviewGiven a set of data X we seek two things: for any classi�cation p.d.f. T we seek themaximum posterior (map) parameter values ~V , and irrespective of any ~V we seek themost probable T . Thus there are two levels of search. For any �xed T specifying thenumber of classes and their class models, we search the space of allowed parameter valuesfor the maximally probable ~V . This is a real valued space of generally high dimension,subject to strong constraints between the parameters. There are many local maxima andwe have no simple way to determine the global maximum except by generate and test.Thus parameter level search requires an expensive numerical optimization.The model level search involves the number of classes J and alternate class models Tj .There are several levels of complexity. The basic level involves a single p.d.f. Tj common



Bayesian Classi�cation (AutoClass): Theory and Results 65to all classes, with search over the number of classes. A second level allows the individualTj to vary from class to class. Model level search is subject to the usual combinatorialexplosion of possibilities as attribute number increases, but the Occam factor inherentin the Bayesian approach limits the probability of complex class models for any choiceof model and non-delta priors (section 6.3.4).Note that we have described the search problem for unsupervised classi�cation. Su-pervised classi�cation is much easier: since we already know the class assignments, theparameter level search reduces to a single step computation of the map parameter val-ues. The model level search retains some of its combinatorial complexity, but with knownclass memberships we can seek the most probable model for each class individually. Theadditional information obtained by knowing the class assignments makes it much easierto explore the space of allowed class models, and obtain maximally informative classdescriptions.6.3 AutoClass in DetailWe begin with the standard assumption that the data instances Xi are conditionally in-dependent given the classi�cation p.d.f. ~V ; T . Thus we claim that any similarity betweentwo instances is accounted for by their class memberships, and that there are no furtherinteractions between data. Under this assumption the joint data probability is just theproduct of the individual instance probabilities.6.3.1 AutoClass Basic ModelOur classi�cation level, or interclass, model ~Vc; Tc is the classical Finite Mixture modelof Everitt & Hand (1981) and Titterington et al. (1985). This postulates that eachinstance belongs to one and only one, unknown, member of a set of J classes Cj, witha probability P(Xi 2 Cj j ~Vc; Tc; S; I). Note that this probability is independent of theinstance attribute vector ~Xi. In principle the classes constitute a discrete partitioning ofthe data, and thus the appropriate p.d.f. is a Bernoulli distribution. Its parameters ~Vcare a set of probabilities f�1; : : : ; �Jg, constrained that 0 � �j � 1 andPj �j = 1. Thuswe have:P(Xi 2 Cj j ~Vc; Tc; S; I) � �j: (6.3.1)Since the Dirichlet (multiple Beta) distribution is conjugate1 to the Bernoulli, we use auniform minimum information version for the prior probability distribution on the �j:1A conjugate prior is one which, when multiplied with the direct probability, gives a posterior prob-ability having the same functional form as the prior, thus allowing the posterior to be used as a prior infurther applications.



66 Cheeseman & StutzP(�1; : : : ; �J jTc; S;I) � �(J + 1)[�(1 + 1=J)]J Yj � 1Jj (6.3.2)The map parameter estimates for the supervised case, where Ij is the known number ofinstances assigned to Cj, are then b�j = (Ij + 1=J)=(I + 1).The instances Xi from each class are assumed to possess attribute vectors ~Xi that areindependently and identically distributed w.r.t. the class as P( ~Xi jXi 2 Cj; ~Vj; Tj; S; I).The p.d.f. ~Vj; Tj thus gives the conditional probability that an instance Xi would haveattribute values ~Xi if it were known that the instance is a member of class Cj. This classdistribution function is a product of distributions modeling conditionally independentattributes k:2P( ~Xi jXi 2 Cj; ~Vj; Tj; S; I) =Yk P(Xik jXi 2 Cj ; ~Vjk; Tjk; S;I): (6.3.3)Individual attribute modelsP(Xik jXi 2 Cj; ~Vjk; Tjk; S;I) include the Bernoulli and Pois-son distributions, and Gaussian densities. They are detailed in the next section.Combining the interclass and intraclass probabilities, we get the direct probability thatan instance Xi with attribute values ~Xi is a member of class Cj:P( ~Xi; Xi 2 Cj j ~Vj ; Tj; ~Vc; Tc; S; I) = �jYk P(Xik jXi 2 Cj; ~Vjk; Tjk; S;I): (6.3.4)The normalized class membership probability is obtained from this by normalizing overthe set of classes.The probability of observing an instance Xi with attribute values ~Xi, regardless of itsclass is then:P( ~Xi j ~V ; T; S; I) =Xj (�jYk P(Xik jXi 2 Cj; ~Vjk; Tjk; S;I)): (6.3.5)Thus the probability of observing the database X is:P(X j ~V ; T; S; I) =Yi [Xj (�jYk P(Xik jXi 2 Cj; ~Vjk; Tjk; S;I))]: (6.3.6)So far we've only described a classical �nite mixture model. We convert this to aBayesian model by introducing priors, at this point only on the parameters, obtainingthe joint probability of the data and the parameter values:P(X~V jTS I) = P(~V jTS I)P(X j ~V TS I) (6.3.7)= P( ~Vc jTcS I)Yjk [P( ~Vjk jTjkS I)]Yi [Xj (�jYk P(Xik jXi 2 Cj; ~VjkTjkS I))]:2For exposition we show all attributes as if independent, with independent p.d.f.'s and parameterpriors. The shift to partially or fully covariant attributes is only a matter of bookkeeping.



Bayesian Classi�cation (AutoClass): Theory and Results 676.3.2 AutoClass Search and EvaluationWe seek two things: For any given classi�cation form T = Tc; T1; : : : ; TJ and data X,we want the map parameter values obtained from the parameters' posterior p.d.f.:P(~V jX;T; S; I) = P(X; ~V jT; S; I)P(X jT; S; I) = P(X; ~V jT; S; I)Rd~V P(X; ~V jT; S; I) : (6.3.8)Independently of the parameters, we want the map model form, conditional on the data,where the posterior probability of the p.d.f. form T is:P(T jX;S; I) = P(T jS; I)P(X jT; S; I)P(X jS; I) = P(T jS; I) Rd~V P(X; ~V jT; S; I)P(X jS; I) (6.3.9)/ P(T jS; I) Z d~V P(X; ~V jT; S; I) (6.3.10)/ Z d~V P(X; ~V jT; S; I) = P(X jT; S; I): (6.3.11)The proportionality in (6.3.10) is due to dropping the normalizing constant P(X jS; I),which is not generally computable. This is not a problem, since we are only interestedin relative probabilities of a limited number of alternate models T . The proportionalityin (6.3.11) holds when we take the prior probability P(T jS; I) to be uniform over allT of interest. This is reasonable when we have no strong reason to favor one modelover another. P(T jS; I) is only a single discrete probability. In any but toy problems,the product over the data probabilities and/or the parameter priors will quite dominateany non-zero P(T jX;S; I). Thus we implicitly use P(T jS; I) to exclude models deemedimpossible, by ignoring those models, and substitute P(X jT; S; I) for P(T jX;S; I) whenmaking decisions.Frustratingly, attempts to directly optimize over or integrate out the parameter sets~Vjk, in equation (6.3.7), founder on the JI products resulting from the product oversums. Only minuscule data sets can be processed without approximation.The classical application of the mixture assumption suggests a useful approach. Ifwe knew the true class memberships, as in supervised classi�cation, and augmented theinstance vectors Xi with this information, the probabilities P(X 0i jX 0i 2 Cj; ~Vj ; Tj; S;I)would be zero whenever X0i 62 Cj. The sum over j in equation (6.3.7) would degenerateinto a single non-zero term. Merging the two products over k, and shifting the attributeproduct within, givesP(X 0; ~V jT; S; I) = P(~V jT; S; I)Yj [ YX0i2Cj(�jYk P(X 0ijk j ~Vjk; Tjk; S;I))] (6.3.12)



68 Cheeseman & Stutz= P(~V jT; S; I)Yj [�njj Yk P(X 00jk j ~Vjk; Tjk; S; I)] (6.3.13)where nj is the number of cases assigned to Cj, and the X 00jk are sets of statistics,corresponding to attribute p.d.f.'s Tjk, obtained from the X 0i 2 Cj.This pure product form cleanly separates the classes with their member instances.Class parameters can be optimized or integrated out, without interaction with the otherclass's parameters. The same holds for the independent attribute terms within eachclass. Clearly, for supervised classi�cation, the optimization and rating of a model is arelatively straightforward process. Unfortunately, this does not hold for unsupervisedclassi�cation.One could use the mixture assumption directly, applying this known assignment ap-proach to every partitioning of the data into J non-empty subsets. But the number ofsuch partitionings is Stirling's S(J)I , which approaches JI for small J . This technique isonly useful for verifying our approximations with extremely small data and class sets.We are left with approximation. Since equations (6.3.4) and (6.3.7) are easily evalu-ated for known parameters, the obvious approach is a variation of the EM algorithm ofDempster et al. (1977) and Titterington et al. (1985). Given the set of class distri-butions Tj, and the current map estimates of the values for �j and ~Vjk, the normalizedclass conditional probabilities of equation (6.3.4) provide us with weighted assignmentswij in the form of normalized class probabilities:wij � P( ~Xi; Xi 2 Cj j ~V ; T; S;I)Pj P( ~Xi; Xi 2 Cj j ~V ; T; S;I) / �jYk P(Xik jXi 2 Cj; ~Vjk; Tjk; S; I): (6.3.14)We can use these instance weightings to construct weighted statistics corresponding tothe known class case. For a discrete attribute, these are the class weighted number ofinstances possessing each discrete value wjkl. For a real valued attribute modeled by aGaussian, these are the class weighted number, mean, and variance:wj =Xi wij; mjk = w�1j Xi wijXik; s2jk = w�1j Xi wij(Xik �mjk)2: (6.3.15)Using these statistics as if they represented known assignment statistics permits reesti-mation of the parameters with the partitioning of equation (6.3.13). This new parameterset then permits reestimation of the normalized probabilities. Cycling between the tworeestimation steps carries the current parameter and weight estimates toward a mutuallypredictive and locally maximal stationary point.Unfortunately, there are usually numerous locally maximal stationary points. Andexcepting generate-and-test, we know of no method to �nd, or even count, these maxima



Bayesian Classi�cation (AutoClass): Theory and Results 69| so we are reduced to search. Because the parameter space is generally too largeto allow regular sampling, we generate pseudo-random points in parameter (or weight)space, converge to the local maximum, record the results, and repeat for as long as timeallows.Having collected a set of local maxima for model T , and eliminated the (often many)duplicates, we use the local statistics X 00 = fwj; X00jkg to approximate P(X jT; S; I)using:P(X 00 jT; S; I) � Z d~V [P(~V jT; S; I)Yj (�wjj Yk P(X 00jk j ~Vjk; Tjk; S; I))]: (6.3.16)However we cannot use P(X00 jT; S; I) as a direct approximation to P(X jT; S; I). Equiv-alence between P(X;V jT; S; I) and P(X00; V jT; S; I) holds only when the weights wijused to compute the X 00jk are indicators: wij 2 f0; 1g andPj wij = 1. As the wij divergefrom indicator values, P(X00 jT; S; I) becomes signi�cantly less than P(X jT; S; I). Thisis easily seen by computing the ratio of the likelihoods given by the two methods at themap parameters bV :P(X j bV ; T; S; I)P(X 00 j bV ; T; S;I) = Qi[Pj( b�jQk P(Xik jXi 2 Cj;dVjk; Tjk; S; I))]Qj( b�jwj Qk P(X 00jk jdVjk; Tjk; S;I)) : (6.3.17)This ratio is is observed to approach 1 when the weights wij and parameters ~Vjk are mu-tually predictive and the weights approach indicator values. As values diverge from eithercondition, this ratio's value increases drastically. Thus we approximate P(X jT; S; I) as:P(X jT; S; I)� � P(X 00 jT; S; I) P(X j bV ; T; S;I)P(X 00 j bV ; T; S; I) : (6.3.18)This substitution of P(X jT; S; I)� for P(X jT; S; I) is a gross simpli�cation, andcurrently the weakest point in our development. Mathematically we are claiming thatP(X j ~V ; T; S; I) and P(X00 j ~V ; T; S; I), taken as functions of ~V , are everywhere in thesame proportion as at the map value bV . We have no reason to believe this claim. How-ever, we �nd that both probabilities fall o� rapidly, in orders of magnitude, as ~V divergesfrom the bV . Moreover, the rate of this fall o� is approximately exponential in the num-ber of data. Thus for even moderate3 amounts of data, the only signi�cant contributionsto either P(X jT; S; I) or P(X00 jT; S; I) come from the region of ~V near bV , where theproportion is most likely to hold.3Moderate, in this context, may be taken to be of order 100 instances per class. This varies with thedegree that T and bV give distinct classes, which may be characterized by the degree to which the wijapproach indicator values.



70 Cheeseman & StutzThe P(X jT; S; I)� de�ned above is computed for �xed X 00 corresponding to a par-ticular local bV . For any given p.d.f. form T , we expect repeated EM searches to �nddiverse distinct stationary points, with corresponding distinct map parameter sets bV .How then, can we claim that any one P(X jT; S; I)� represents P(X jT; S; I), when thelatter is supposed to be the integral over the full parameter space ~V and implicitly in-cludes all weightings compatible with the data? Our experience shows that the largestP(X jT; S; I)� can dominate the other peak integrals to a remarkable degree. Ratiosbetween the two largest integrals of 104 to 109 are routine when the number of attributevalues, I � K, exceeds a few hundred. With a few million attribute values, the ratiomay easily reach e100 � 1044. In such circumstances we feel justi�ed in reporting thelargest known P(X0 jT I)� as a reasonable approximation to P(X jTS I), and in using itas our approximation to P(T jXS I). But it must be admitted that we have not proventhat non-peak regions never make signi�cant contribution to P(T jXS I), nor have wesatisfactorily determined the conditions under which our assumptions hold.When one or more subsets of nm class p.d.f.'s Tj have identical functional form, thecorresponding blocks of cVj may be interchanged without altering P(X jT; S; I). In ef-fect, the probability peak at bV possesses nm! mirror images. Thus for any such nm,P(X jT; S; I)� needs to be scaled by nm!. The magnitude of this scaling is usually smallrelative to that of P(X jT; S; I)�, but may be signi�cant when comparing T with verydi�erent numbers of classes.Thus we rate the various models T by their best P(X jTS I)� and report on them interms of the corresponding map parameterizations bV . If one model's marginal dominatesall others, it is our single best choice for classifying the database. Otherwise we reportthe several that do dominate.6.3.3 AutoClass Attribute ModelsEach class model is a product of conditionally independent probability distributions oversingleton and/or covariant subsets of the attributes. For the medical example given insection 6.2.1, blood type is a discrete valued attribute which we model with a Bernoullidistribution while age and weight are both scalar real numbers that we model with alog-Gaussian density.The only hard constraint is that all class models, used in any classi�cations that areto be compared, must model the same attribute set. Attributes deemed irrelevant to aparticular classi�cation cannot simply be ignored, since this would a�ect the marginalprobabilities, as is shown below.AutoClass provides basic models for simple discrete (nominal) and several types of nu-merical data. We have not yet identi�ed a satisfactory distribution function for ordereddiscrete (ordinal) data. In each case we adopt a minimum or near minimum informa-



Bayesian Classi�cation (AutoClass): Theory and Results 71tion prior, the choice being limited among those providing integrable marginals. Thislimitation has seriously retarded development of the more speci�c models, but numericalintegration is considered to be too costly for EM convergence.In the following we describe in detail the basic elements of the independent Bernoulliand Gaussian models, and note other attribute probability distributions that we use toassemble the class models.� Discrete valued attributes (sex, blood-type, : : : ) | Bernoulli distributions withuniform Dirichlet conjugate prior. For the singleton case with Lk possible values,the parameters are ~Vjk � fqjk1 : : : qjkLkg, such that 0 � qjkl � 1, PLkl qjkl = 1,whereP(Xik = l jXi 2 Cj; ~Vjk; Tjk; S; I) � qjkl (6.3.19)P(qjk1; : : : ; qjkLk jTjk; S; I) � �(Lk + 1)[�(1 + 1Lk )]Lk LkYl=1 q 1Lkjkl (6.3.20)bqjkl = wjkl + 1Lkwj + 1 (6.3.21)For the covariant case, say sex and blood type jointly, we apply the above modelto the cross product of individual attribute values. Thus female and type A wouldform a single value in the cross product. The number of such values, and thusthe number of parameters required, is the product of the individual attribute's Lk. However the prior of equation (6.3.20) severely limits the probability of largecovariant p.d.f.'s, as discussed in section 6.3.4.� Real valued location attributes (spatial locations) | Gaussian densities with eithera uniform or Gaussian prior on the means. We use a Je�reys prior (6.3.24) on asingleton attribute's standard deviation, and the inverse Wishart distribution (Box& Tiao 1973) as the variance prior of covariant attribute subsets. For a singleattribute with uniform priors, using the statistics de�ned in equation (6.3.15):P(Xik jXi 2 Cj; �jk; �jk; Tjk; S;I) � 1p2��jk e� 12�Xik��jk�jk �2 ; (6.3.22)P(�jk jTjk; S;I) = 1�kmax � �kmin ; b�jk = mjk; (6.3.23)P(�jk jTjk; S;I) = ��1jk �log �kmax�kmin ��1; b�2jk = s2jk wjwj + 1 : (6.3.24)



72 Cheeseman & Stutz� Real valued scalar attributes (age, weight) | Log-Gaussian density model obtainedby applying the Gaussian model to log(Xik�mink). See Aitchison & Brown (1957).� Bounded real valued attributes (probabilities) | Gaussian Log-Odds obtained byapplying the Gaussian to log((Xik �mink)=(maxk �Xik)) (under development).� Circular or angular real valued attributes | von Mises-Fisher distributions on thecircle and n-sphere (under development) See Mardia et al. (1979).� Integer count valued attributes | Poisson distribution with uniform prior perLoredo (1992). No covariant form has been developed.� Missing values | Discrete valued attribute sets are extended to include \missing"as an additional attribute value, to be modeled as any other value. Numericalattributes use a binary discrete probability qjk for \missing" and 1�qjk for\known",with the standard numerical model conditioned on the \known" side. With theGaussian model this gives:P(Xik = missing jXi 2 Cj; qjk; �jk; �jk; Tjk; S;I) � qjk; (6.3.25)P(Xik = r jXi 2 Cj; qjk; �jk; �jk; Tjk; S;I) � (1� qjk)p2��jk e� 12� r��jk�jk �2 : (6.3.26)� Hierarchical models | represent a reorganization of the standard mixture model,from a 
at structure, where each class is fully independent, to a tree structure wheremultiple classes can share one or more model terms. A class is then described bythe attribute model nodes along the branch between root and leaf. This makes itpossible to avoid duplicating essentially identical attribute distributions common toseveral classes. The advantage of such hierarchical models lies in eliminating excessparameters, thereby increasing the model posterior. See Hanson et al. (1991) fora full description of our approach. Other approaches are possible: see Boulton &Wallace (1973).� Irrelevant attributes | Irrelevant attributes pose a problem which we have onlyrecently recognized. If an attribute is deemed irrelevant to all classi�cation modelsunder consideration, it can simply be deleted from the database. If an attribute isdeemed irrelevant to only some of the models, one is tempted to simply eliminateit from consideration by those models, and to model it in the others. This is whatwe have done in AutoClass, but it is an error.Consider two models ~Vj ; Tj and ~Vj 0; T 0j, identical in both form and parameter valuesexcept that the latter includes an additional ~Vjk00; T 0jk0 modeling one additional



Bayesian Classi�cation (AutoClass): Theory and Results 73attribute k0. Let T 0jk0 be any appropriate p.d.f. except a delta function, Then forany instance Xi:P( ~Xi jXi 2 Cj; ~Vj ; Tj; S;I) > P( ~Xi jXi 2 C0j; ~Vj 0; T 0j; S;I): (6.3.27)This is a simple consequence of the fact that a non-delta p.d.f. cannot predict anyvalue with probability 1. Taken to the limit, we �nd that a class model whichignores all attributes will always be more probable than one which models anyattributes. Obviously, the results of modeling with di�erent attribute sets areincommensurable.How should we handle irrelevant attributes? For a classi�er, an attribute is irrele-vant when all classes possess identical p.d.f.'s for that attribute. In the hierarchicalmodel described above, this can be achieved by pushing the attribute model ~Vjk; Tjkup to the root node, where it is inherited by all leaves. In an ordinary mixturemodel the same e�ect can be obtained by using a common Tjk with every ~Vjk �xedat the map values estimated from a single class classi�cation model. This will suf-�ce for the case when all classes within a classi�cation ignore the attribute, andallow comparison between classi�cations that deem di�erent attribute subsets irrel-evant. The case where only some classes within a classi�cation ignore an attributeis yet undecided.In principle, our classi�cation model should also include a prior distribution P(T jS; I)on the number of classes present and the individual class model forms Tj . Currently wetake this distribution to be uniform and drop it from our calculations. Thus we ignoreany prior information on alternate classi�cation model probabilities, relying solely on ourparameter priors for the Occam factor preventing over �tting of the models. We �nd thisquite su�cient.6.3.4 The Occam FactorWe have several times mentioned an \Occam Factor", implying that Bayesian parameterpriors can somehow prevent the over �tting that is a problem with maximum likelihoodoptimization of any kind of probabilistic model. Consider that every single parameterintroduced into a Bayesian model brings its own multiplicative prior to the joint prob-ability, which always lowers the marginal. If a parameter fails to raise the marginal byincreasing the direct probability by a greater factor than the prior lowers the marginal,we reject the model incorporating that parameter. In the mixture models used by Au-toClass, each class requires a full set of attribute model parameters, each with its ownprior. Those priors always favor classi�cations with smaller numbers of classes, and do so



74 Cheeseman & Stutzoverwhelmingly, once the number of classes exceeds some small fraction4 of the databasesize.Similar e�ects limit model complexity within the classes. Simple independent attributemodels are usually favored simply because they require fewer parameters than the corre-sponding covariant models. Ten real valued attributes require 20 parameters for modelingwith independent Gaussians, and 55 for the full covariant Gaussian. Ten binary discreteattributes also require 20 parameters for modeling with independent Bernoulli distribu-tions, but 1024 are needed for a fully covariant Bernoulli distribution. One needs a greatmany very highly covariant instances to raise a fully covariant model's marginal abovethe independent model's.Both of the foregoing e�ects are con�rmed throughout our experience with AutoClass.For data sets of a few hundred to a few thousand instances, class models with large ordercovariant terms are generally rated far lower than those combining independent and/orsmall order covariant terms. We have yet to �nd a case where the most probable numberof classes was not a small fraction of the number of instances classi�ed. Nor have wefound a case where the most probable number of model parameters was more than asmall fraction of the total number of attribute values. Over �tting simply does not occurwhen Bayesian mixture models are correctly applied.6.3.5 The AutoClass ImplementationAutoClass was written in Lisp, taking full advantage of the extraordinary programmingenvironment provided by the Symbolics Lisp Machine. It has been adapted to operate inmost Lisp environments, and a data parallel version exists for star-Lisp on the CM-3. AC translation is in preparation. Some details regarding the computational considerationsencountered in implementing AutoClass will be found in Stutz & Cheeseman (1995).A NASA technical report giving fuller details of the mathematics and implementation isin preparation.6.4 Case Studies6.4.1 Infrared Astronomical Satellite (IRAS) Data.The �rst major test of AutoClass on a large scale real-world database was the applicationof AutoClass to the IRAS Low Resolution Spectral Atlas. This atlas consisted of 5425mean spectra of IRAS point sources. Each spectrum consists of 100 \blue" channels inthe range 7 to 14 microns, and another 100 \red" channels in the range from 10 to 244Typically of order 1%, but potentially larger for very distinct classes.



Bayesian Classi�cation (AutoClass): Theory and Results 75microns. Of these 200 channels, only 100 contain usable data. These point source spectracovered a wide range of intensities, and showed many di�erent spectral distributions. Weapplied AutoClass to this spectral database by treating each of the 100 spectral channels(intensities) as an independent normally distributed single real value. The log-normalmodel is preferable for such scalar data, but several percent of the reported intensityvalues were negative. Also, adjacent spectral values are expected to be highly correlated,but it was not obvious how to incorporate neighbor correlation information. Thus weknew from the beginning that we were missing important information, but we werecurious how well AutoClass would do despite this handicap.Our very �rst attempts to apply AutoClass to the spectral data did not producevery good results, as was immediately apparent from visual inspection. Fortunately,inspection also exposed the cause of the problem. The spectra we were given had been\normalized"|in this case normalization meant scaling the spectra so that all had thesame peak height. This normalization meant that noisy spectra were arti�cially scaledup (or down) depending on whether the noise at the peak was higher or lower than theaverage. Since all values in a single spectrum were scaled by the same constant, anincorrect scaling constant distorted all spectral values. Also, spectra with a single strongpeak were scaled so that the rest of the spectrum was close to the noise level. We solvedthe \normalization problem" by renormalizing the data ourselves so that area under theall curves is the same. This method of normalization is much less sensitive to noise thanthe peak normalization method.The experts who provided us with this data tried to make life easy for us by only givingus the brightest spectra from 1/4 of the sky (without telling us about this sampling bias).When we found this out, we requested all the spectra in the atlas to work with. Becausethis larger atlas included much noisier spectra, we found a new problem|some spectralintensities were negative. A negative intensity, or measurement, is physically impossible,so these values were a mystery. After much investigation, we �nally found out that theprocessing software had subtracted a \background" value from all spectra. This pre-processing, of course, violates the basic maxim that analysis should be performed on thedata actually measured, and all \corrections" should be done in the statistical modelingstep.Once these problems had been removed, we used AutoClass II to classify all 5425 spec-tra. The results of this classi�cation are presented in Cheeseman et al. (1989), and itrevealed many interesting new discoveries. The �rst observation is that the AutoClassclasses (77 of them) gave a signi�cantly di�erent classi�cation than that previously pro-vided with the atlas. This earlier IRAS spectral classi�cation was based on expectedfeatures and human generated criteria based on visual inspection. AutoClass was ableto make many subtle distinctions between spectra that super�cially look similar, and



76 Cheeseman & Stutzthese distinctions were not previously known. Some of the classes, such as the blackbodyemission classes, and the silicate emission classes were known from previous studies, butthe �ne distinctions within these broad classes were not previously known.The IRAS spectral classi�cation also revealed other astronomically signi�cant results.For example, by �nding which classes the few known carbon stars occured in, we wereable to triple the number of known (or suspected) carbon stars. AutoClass also revealeda large number of blackbody stars with a signi�cant IR excess, presumably due to dustsurrounding the star. Another indirect result of the classi�cation is that the averagespectral intensities of a class cancel the noise present in single spectra, making �nerdetail visible. For example, this noise suppression revealed a very weak spectral \bump"at 13 microns in some classes that is completely invisible in the individual spectra. Manyof these discoveries are discussed in Goebel et al. (1989).The AutoClass classi�cation was su�ciently good, that it revealed problems with thedata that had been previously missed. In particular, some of the blackbody sub-classesshowed an excess of energy at the blue end of the spectrum. There is no plausible physicalmechanism that could produce such a blue excess in blackbody stars, so this result was amystery. Eventually, we discovered that this excess was the result of incorrect calibration.Originally, Vega (a 10,000 degree star) was chosen as the reference star, but later in themission the reference star was switched to � Tau (a 4000 degree star). Unfortunately,the software was not altered to re
ect this change, thus causing the calibration error. Ofcourse, none of this change information was documented, so it took considerable searchfor us to �nd the cause.Other calibration errors and artifacts of the data processing also gradually came tolight as we discussed our results with the domain experts. In particular, we found outthat the spectra were often contaminated with cosmic ray \spikes", and that a \�lter"in the software removed these spikes from the data before averaging the di�erent spectratogether. Unfortunately, this �lter could not tell the di�erence between a strong spectralline and a cosmic ray hit, so it often eliminated perfectly good spectra and yet stillpassed contaminated spectra. Again the lesson to be drawn from this experience is thatthe raw observation data should be made available, and e�ects such as cosmic rays andbackground noise should be statistically modeled|the data itself should not be modi�ed!6.4.2 IRAS LessonsA major lesson of our IRAS experience is that experts tend to pass on only the minimuminformation that they think the data analyst needs. They are attempting to be helpful|but in practice they are not treating the analyst as a full partner. We kept �nding newunexplained results, and only by confronting the experts with them would they revealother sources of data, or processing steps they had neglected to mention. Finally, in



Bayesian Classi�cation (AutoClass): Theory and Results 77frustration, we insisted that our experts give us all the data that they had, and all thedocumentation on the data processing that had been performed instead of feeding it to uspiecemeal. Even then we found out about other data (e.g. star variability index), thatcould have aided the classi�cation, well after we had published our classi�cation. Webelieve that a data analyst using tools like AutoClass must become moderately expert inthe �eld. This is in order to understand all the biases in the data collection; to understandthe processing that occured before the data was made available for analysis; to ensurethat all the relevant data has been located; and to aid the interpretation process.Another major lesson learned from the IRAS experience is that �nding new and inter-esting results (classes) is not enough|unless some plausible interpretation of these resultscan be found, they will probably be ignored. This interpretation step often involves fol-low up data or analysis to test possible hypotheses. As an example, we discovered subtledistinctions in the silicate emission spectra (e.g. classes �1 and �11 in Cheeseman etal. (1989), ) and needed to explain these di�erences. Since the creators of the IRASatlas had provided visual matches for each point source, we used this data to see howstellar type related to the discovered classes. Also, the average galactic latitude of theclasses was signi�cantly di�erent, indicating that one class is more distant, and intrinsi-cally brighter. The most likely interpretation of these results is that there are di�erentclasses of M-giants, with di�erent galactic distributions, and these classes can be dis-tinguished by subtle di�erences in their infrared spectra. Note that we could do thisfollow up investigation relatively easily because the IRAS spectral atlas included consid-erable auxiliary data about each point-source (galactic coordinates, variability, opticalidenti�cation, etc.).Finding the classes in a database is only part of the task|the remaining task is tocommunicate the class descriptions to the expert. AutoClass generates reports thatfully describe the classes, but these can be di�cult to interpret for a novice. In theIRAS classi�cation case, we generated spectral plots that displayed the class spectralvalues graphically. This graphical output is shown in Cheeseman et al. (1989), andis immediately understood by domain experts. We also classi�ed the classes (a meta-classi�cation) and used these meta-classes to organize the full classi�cation. The expertsfound this meta-classi�cation very helpful. We cannot over-emphasize the importance ofgenerating easily understood outputs, but unfortunately, really good outputs tend to bedomain speci�c.6.4.3 DNA Intron DataThis project began when we received a database of about 3000 donor and acceptor sites(intron/exon boundaries) from human DNA. In most species, the DNA that codes for aparticular protein (a gene) is broken up by the insertion of stretches of DNA (introns)



78 Cheeseman & Stutzthat are spliced out of the corresponding messenger RNA before it is used to produceproteins. The segments of DNA that contribute to the �nal RNA are called exons.The beginning of exon/intron boundary is called the donor site, and the correspondingintron/exon end is called the acceptor site. The intron length (between a donor and anacceptor site) can vary from a minimum of about 80 bases, to many thousands of bases.The donor database consisted of an ordered list of the possible bases (A,G,C,T) at the10 bases before the splice site, and 40 bases of the adjoining intron (and similarly for theacceptor site database). It has been traditionally assumed that in human DNA there isonly one general type of donor and acceptor site, because they all use the same splicingmachinery. We decided to test this assumption by applying AutoClass to both the donorand acceptor databases separately.Our initial classi�cation revealed many classes that describe essentially one unique basesequence per class. In other words, there are splice sites that are practically duplicatedmany times in human DNA. Further investigation showed that most of these nearlyidentical sites occured in the same gene, usually in an uninterrupted sequence. Whenthe nearly identical sites occur in di�erent genes, these genes were found to be practicallyidentical as a result of gene duplication. Since duplication within a gene, and duplicationof genes themselves is well known in the molecular biology community, these very tightclasses were of no interest.In order to eliminate the duplication problem, we pruned the data to eliminate allsequences that had greater than 50% identity. This pruning reduced our data by roughly30%, and allowed AutoClass to �nd 3 classes in the remaining data (for both the donorand acceptor sites). Inspection of these classes showed a very obvious pattern. For thelargest class (about 33%) every position in both donors and acceptors was \C rich"|that is, every position had a signi�cantly higher probability of having a C than the globalaverage. The other 2 classes (donor and acceptor) were TA rich and G rich respectively.Note that this pattern was discovered even though AutoClass was treating each positionindependently, indicating a strong causal mechanism producing this uniform base bias.This base bias even extended into the exon region, although the signal was much weakerthere. This is surprising, because the choice of bases in an exon is thought to be dictatedentirely by its corresponding biological function through the protein it encodes.Having found these clear classes, we entered the next phase of data analysis: trying tointerpret the discovered pattern. One question that occured to us was whether the class ofdonor site was correlated with the class of the corresponding acceptor site. Unfortunately,our original databases did not record the corresponding sites in the separate donor andacceptor databases. Also, the original databases were extracted from a very old version ofGenBank, using obscure (and irreproducible) �ltering techniques. We were fortunate in



Bayesian Classi�cation (AutoClass): Theory and Results 79�nding collaborators in the Stanford University Molecular Biology Lab5, who extractedall human introns (with 
anking exons) from the current version of GenBank for us.This gave us a much larger database, and all the auxiliary information we needed to dofollowup studies.Our followup studies revealed the following:� The class of a donor site was indeed highly correlated with the correspondingacceptor site. For the C-rich class, for example, not only were both the donor andacceptor sites C-rich, but the entire intron between them was C-rich. A similarpattern was observed for the other classes.� The same classes were observed in mouse genes, and where there are correspondinggenes in mice and humans, they have the same classes, indicating that whatevercreated the pattern we observed has persisted for at least 60 million years.� The base-frequency pattern extends into the 
anking exons, but not as strongly asthat observed in the introns.� If one intron is, say, TA rich, then there is a high probability that any neighboringintrons will also be TA rich.From these observations, we can reasonably conclude that DNA gene relative base fre-quency patterns can persist for long stretches (in some cases many thousands of bases).Also, these base frequencies occur in other species and the frequency type is preservedthroughout evolution. Recent sequencing of whole chromosomes (from yeast and worms)show similar long stretches of G + C rich (or poor) variation, on both coding and non-coding regions. All of these observations point toward some unknown essential mecha-nism that operates on DNA and creates/maintains/uses these base frequency patterns.Note that AutoClass, combined with human interpretation and additional testing foundthis general pattern, even though it extends well beyond the original very restricteddatabase. Unfortunately, these results have not been published, so these discoveriesremain unknown to the molecular biology community.6.4.4 LandSat DataThe largest database that we have applied AutoClass to is a 1024�1024 array of LandSatpixels, where each pixel records 7 spectral intensities from a 30m square ground patch.Our test image covers about a 30km square region in Kansas, taken by the LandSat/TMsatellite in August 1989. Our goal was to �nd classes in this set of over 1 million \cases"(i.e. pixels). This large image data set put such strong computational demands on5Our collaborators were Doug Brutlag and Tod Klingler



80 Cheeseman & Stutzour standard LISP AutoClass (running on a Symbolics machine) that we developed aparallel version of AutoClass (in LISP) to run on a Connection machine, and later ona CM-2. Fortunately, the structure of AutoClass lends itself to parallelization, so thatrecent parallel versions allow large database processing in reasonable time.Instead of treating each spectral value independently within a class (as we did in earlyversions of AutoClass), we allowed the values to be fully correlated with each other,with separate correlations for each class. The theory behind this correlated version ofAutoClass is presented in Hanson et al. (1991). This model still assumes that thepixels are independent of their neighbors. That is, we do not take into account thespatial correlation of neighboring pixels, even though we know this is a strong sourceof additional information. We did this only because AutoClass is a general purposetool that cannot be easily modi�ed to �t the known structure of a new domain. Weare currently investigating methods for integrating spatial correlation information frommultiple images.Like other case studies described in this chapter, the results from LandSat data clas-si�cation were improved signi�cantly by transforming the data (preprocessing), so thatthe assumptions built into AutoClass better �t the input data. In the case of LandSatpixels, it is well known that the observed intensity of a patch on the ground is a�ectedby the ground slope of that patch. This means that if we attempt a classi�cation onthe given observed intensities, we get di�erent classes for the same ground cover type,depending on their particular ground slopes. For this reason, it is better to use the ratioof spectral intensities for each pixel instead, since the ratio is not a�ected by a commonscaling factor, such as the ground slope e�ect. For all pixels, we replaced the given spec-tral values with the ratio of the spectral value to the sum of all spectral values (for thatpixel). Note that this transformation of the data does not destroy information, since theoriginal values can be recovered (to within numerical noise). Since the spectral ratios arestrictly positive (i.e. they are scale parameters), we assume that their value distributionis log-normally distributed, so we use Log(spectral ratio) as our input data.Readers may wonder why we rail against preprocessing of data by others, yet do thesame thing ourselves. Our answer is twofold. Firstly, we encourage transformations ofthe data that do not destroy information (reversible transformations), if this makes thetransformed data better �t the assumptions of the particular data analysis techniquebeing used. Secondly, our major objection is to undocumented preprocessing, especiallywhen the informal data description does not match the data as given.Before we ran AutoClass on our transformed data, we histogramed the Log(spectralratio) values to see if our log-normal distribution was reasonable. We were surprisedto �nd that the data values were highly quantized, with large numbers of pixels havingexactly the same value. Further investigation revealed that although the original spectral



Bayesian Classi�cation (AutoClass): Theory and Results 81intensity values were recorded at 8-bit accuracy, most pixels were assigned to a muchsmaller range of intensity bins. That is, although there were 256 possible intensity values,in practice only a very small subset of these values were observed. This is because thecamera's dynamic range was selected to record the extreme values of intensity (to avoidsaturation e�ects), so that nearly all values occur within a much smaller range. We\dithered" these values by adding small random errors with a standard deviation of 1/2a bin width, thus \smoothing" the data values. This dithering corrupted the data, butit avoided problems associated with the strong quantization e�ect.The results of classifying all the pixel intensity data, using full correlation between thespectral values in each class description, are presented in Kanefsky et al. (1994). Thisclassi�cation found 93 classes in the best classi�cation, and these classes were themselvesclassi�ed to produce a meta-classi�cation. This meta-classi�cation makes the individualclasses easier to interpret. By far the greatest aid to interpreting these pixel classes is tothreshold the class membership probability so as to assign each pixel to its most probableclass, then to plot the 2-D distribution of the resulting classes. For many classes, these2-D plots immediately suggest an interpretation to the human eye, such as roads, rivers,valley bottoms, valley edges, �elds of particular crops, etc. Other classes (with manyfewer members) seem to contain pixels with a mixture of basic types. For example, apixel partially falling on a highway, and partially falling on surrounding grass, results ina mixed pixel. If there are enough of these mixed pixels, with roughly the same mixingproportion, they form a class of their own. Clearly, in the mixed pixel case, the classesare not particularly meaningful, but it is surprising that the majority of classes seem tobe composed of pure pixels of a single type.We �nd that applying a general purpose classi�cation tool like AutoClass can produceinteresting and meaningful classes, even when the tool's basic assumptions do not �t thedata very well. In particular, failing to take neighbor pixel class correlation into account,and the assumption that every pixel belongs to one and only one class, do not �t theLandSat pixel data well, yet the results are surprisingly good. A better classi�cation ofLandSat type data requires a special purpose classi�cation tool that takes into accountthe known properties of the domain.6.5 Summary of Lessons LearntThe above case studies illustrate a number of lessons learnt in applying AutoClass toreal databases. We summarize these lessons as follows:� Data analysis/Knowledge discovery is a process. | Discovery of patternsin data is only the beginning of a cycle of interpretation followed by more testing.



82 Cheeseman & Stutz� General data mining tools are only good for exploratory analysis. |Once the initial patterns have suggested new domain speci�c hypotheses, thesehypotheses need to be further investigated using tools adapted to the hypotheses.� Beware undocumented or irreversible data preprocessing. | Key termsthat may indicate information destroying pre-processing include calibrated, cor-rected, averaged, normalized, adjusted, compressed, and so forth.� Beware hidden biases in data collection. | Such bias may dominate theresulting classes, as in the initial Intron classes.� Di�culty in extracting data from experts. | Experts tend to supply onlythe information they think is needed | an analyst must become a mini-expert inthe domain to really understand the data.� Data transformation to �t analysis tool. |These transformations can greatlyaid pattern discovery. Try di�erent representations. Try di�erent pattern discoverytools.� Visually inspecting the data before use. | This step usually catches grosserrors and obvious patterns.� Unsupervised classi�cation versus supervised classi�cation. Discovery of(unsupervised) classes may or may not be of help in predicting a target variable.� Domain-speci�c display of resulting classes. | What your program outputsis all that the domain expert sees. To make that output useful, it is necessary toprovide display and interpretation appropriate to the speci�c problem domain.AcknowledgmentsWe thank Will Taylor, Mathew Self, Robin Hanson, Bob Kanefsky, Jim Kelley, DonFreeman, and Chris Wallace, without whose help AutoClass would not be half so usefulas it is today. We are also indebted to too many to mention, for the questions andproblem domains that have forced us to extend and re�ne our ideas and understanding.BibliographyAitchison, J. and Brown, J. A. C. 1957. The Lognormal Distribution. Cambridge:University Press.Boulton, D. M. and Wallace, C. S. 1973. An Information Measure of Hierarchic Classi-�cation. Computer Journal, 16 (3): 57-63.
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