
GIT-DPM(1) GIT-DPM GIT-DPM(1)

NAME
git−dpm − debian packages in git manager

SYNOPSIS
git−dpm −−help

git−dpm [options] command[per−command−options and −arguments]

DESCRIPTION
Git−dpm is a tool to handle a debian source package in a git repository.

Each project contains three branches, a debian branch (master/whatever), a patched branch
(patched/patched−whaterver) and an upstream branch (upstream/upstream−whatever) and git−dpm
helps you store the information in there so you have your changes exportable as quilt series.

Git−dpm will guess the other two branches based on the branch it sees. (Most commands act based on the
current HEAD, i.e. what branch you have currently checked out, though some as e.g.status allows an
optional argument instead). So for example, if you are in branchmaster, git−dpm assumes the correspond-
ing upstream branch is calledupstream. If you are in branchupstream-something, it assumes the debian
branch is calledsomething.

Note that most commands may switch to another branch automatically, partly because it is easier to imple-
ment that way and hopefully so one does not need to switch branches manually so often.

SHORT EXPLAN ATION OF THE BRANCHES
the upstream branch (upstream|upstream−whatever)

This branch contains the upstream sources.It contents need to be equal enough to the contents in
your upstream tarball.

the patched branch (patched|patched−whaterver)
This branch contains your patches to the upstream source.Every commit will be stored as a single
patch in the resulting package.

Most of the time it will not exist as branch known togit, but only as some point in the history of
the debian branch and possibly as tag for published versions.Git−dpm will create it when needed
and remove the branch when no longer needed.

To help git generate a linear patch series, this should ideal be a linear chain of commits, whose
description are helpful for other people.

As this branch is regulary rebased, you should not publish it.

the debian branch (master|whaterver)
This is the primary branch.

This branch contains thedebian/directory and has the patched branch merged in.

Every change not indebian/, .git* or deleting files must be done in the patched branch.

EXAMPLES
Let’s start with some examples:

git−dpm 2010-07-19 1

GIT-DPM(1) GIT-DPM GIT-DPM(1)

Checking out a project
First get the master branch:
git cloneURL

Then create upstream branch and see if the .orig.tar is ready:
git−dpm prepare

Create the patched branch and check it out:
git−dpm checkout−patched

Do some changes, apply some patches, commit them..
...
git commit

If your modification fixes a previous change (and that is not the last commit, otherwise you could
have used −−amend), you might want to squash those two commits into one, so use:
git rebase −i upstream

Merge your changes into the debian branch and create patches:
git−dpm update−patches
dch −i
git commit −−amend −a

Perhaps change something with the debian package:
...
git commit −a

Then push the whole thing back:
git push

Switching to a new upstream version
Get a new .orig.tar file. Either upgrade your upstream branch to the contents of that file and call
git−dpm new−upstream ../new−stuff.orig.tar.gz or tell git−dpm to import and record it:
git−dpm import−new−upstream −−rebase ../new−stuff.orig.tar.gz

This will rebase the patched branch to the new upstream branch, perhaps you will need to resolve
some conflicts:
vim ...
git add resolved files
git rebase −−continue

After rebase is run (with some luck even in the first try):
git−dpm update−patches

Record it in debian/changes:
dch −v newupstream−1 "new upstream version"
git commit −−amend −a

Do other debian/ changes:
...
git commit −a

Then push the whole thing back:
git push

git−dpm 2010-07-19 2

GIT-DPM(1) GIT-DPM GIT-DPM(1)

Creating a new project
Create anupstream (or upstream−whatever) branch containing the contents of your orig.tar file:
tar −xvf example 0.orig.tar.gz
cd example−0
git init
git add .
git commit −m "import example_0.orig.tar.gz"
git checkout −b upstream−unstable

You might want to use pristine tar to store your tar:
pristine−tar commit ../example_0.orig.tar.gz upstream−unstable

Then let git−dpm know what tarball your upstream branch belongs to:
git−dpm init ../example_0.orig.tar.gz

Note that since you were inupstream−unstable in this example, in the last examplegit−dpm
assumed you want your debian branch calledunstable and notmaster, so after the command
returned you are in the newly createdunstablebranch.

Do the rest of the packaging:
vimdebian/control debian/rules
dch −−create −−packageexample−v 0−1
git add debian/control debian/rules debian/changelog
git commit −m "initial packaging"

Then add some patches:
git−dpm checkout−patched
vim ...
git commit −a
git−dpm update−patches
dch "fix ... (Closes: num)"
git commit −−amend −a

Thegit−dpm checkout−patchedcreated a temporary branchpatched−unstable(as you were in a
branch calledunstable. If you had called it with HEAD being a branchmaster, it would have
beenpatched) to which you added commits. Then thegit−dpm update−patchesmerged that
changes intounstable, deleted the temporary branch and created newdebian/patches/files.

Then build your package:
git−dpm status &&
dpkg−buildpackage −rfakeroot −us −uc −I".git*"

Not take a look what happened, perhaps you want to add some files to.gitignore (in theunstable
branch), or remove some files from theunstablebranch becaus your clean rule removes them.

Continue the last few steps until the package is finished. Then push your package:
git−dpm tag
git push −−tagstarget unstable:unstable pristine−tar:pristine−tar

GLOBAL OPTIONS
−−debug

Give verbose output what git−dpm is doing. Mostly only useful for debugging or when preparing
an bug report.

git−dpm 2010-07-19 3

GIT-DPM(1) GIT-DPM GIT-DPM(1)

−−debug−git−calls
Output git invocations to stderr. (For more complicated debugging cases).

COMMANDS
init [options] tarfile [upstream-commit[preapplied-commit[patched-commit]]]

Create a new project.

The first argument is an upstream tarball.

You also need to have the contents of those (or similar enough sodpkg−sourcewill not know the
difference) as some branch or commit in your git repository. This will be stored in the upstream
branch (calledupstream or upstream−whatever). If the second argument is non-existing or
empty, that branch must already exist, otherwise that branch will be initialized with what that sec-
ond argument. (It’s your responsiblity that the contents match. git−dpm does not know what your
clean rule does, so cannot check (and does not even try to warn yet)).

You can already have an debian branch (calledmaster or whatever). If it does not exist, it will
exist afterwards. Otherwiseit can contain adebian/patches/seriesfile, which git−dpm will
import.

The third argument can be a descendant of your upstream branch, that contains the changes of
your debian branch before any patches are applied (Most people prefer to have none and lintian
warns, but if you have some, commit/cherry pick them in a new branch/detached head on top of
your upstream branch and name them here).Without −−patches−applied, your debian branch may
not have any upstream changes compared to this commit (or if it is not given, the upstream
branch).

If there is no forth argument, git−dpm will apply possible patches in your debian branch on top of
the third argument or upstream.You can also do so yourself and give that as forth argument.

The contents of this commit/branch given in the forth commit or created by applying patches on
top of the third/your upstream branch is then merged into your debian branch and remembered as
patched branch.

Options:

−−patches−applied
Denote the debian branch already has the patches applied.

Without this git−dpm will check there are no changes in the debian branch outside patch
management before applying the patches but instead check there are no differences after
applying the patches.

−−create−no−patches
Do not create/override debian/patchesdirectory. You will have to call update−patches
yourself. Usefulif you are importing historical data and keep the original patches in the
debian branch.

−−no−commit
Do not commit the new debian/.git−dpm file and possibledebian/patchedchanges, but
only add them to working tree and index.

git−dpm 2010-07-19 4

GIT-DPM(1) GIT-DPM GIT-DPM(1)

prepare
Make sure upstream branch and upstream orig.tar ball are there and up to date. (Best called after a
clone or a pull).

status[branch]

Check the status of the current project (or of the project belonging to the argumentbranchif that is
given). Returnswith non-zero exit code if something to do is detected.

checkout−patched

Checkout the patched branch (patched|patched−whaterver) after making sure it exists and is one
recorded in thedebian/.git−dpm file.

If the patched branch references an old state (i.e. one that is already ancestor of the current debian
branch), it is changed to the recorded current one.

Otherwise you can reset it to the last recorded state with the−−force option.

update−patches

After callingmerge−patched−into−debianif necessary, update the contents ofdebian/patchesto
the current state of thepatchedbranch.

Also record in debian/.git−dpm which state of the patched branch the patches directory belongs to.

Options:

−−redo Do something, even if it seems like there is nothing to do.

−−allow−rev ert
passed on to merge−patched−into−debian

−−amend
Do not create a new commit, but amend the last one in the debian branch.(I.e. call
merge−patched−into−debian with −−amend and amend the updates patches into the last
commit even if that was not created by merge−patched−into−debian).

−−keep−branch
do not remove an existing patched branch (usually that is removed and can be recreated
with checkout−patchedto avoid stale copies lurking around.

merge−patched−into−debian
Usuallyupdate−patchesruns this for you if deemed necessary.

Replace the current contents of the debian branch (master|whaterver) with the contents of the
patched branch (patched|patched−whaterver), except for everything underdebian/. Also files
that are deleted in the debian branch keep being deleted and files in the root directory starting with
".git" keep their contents from the debian branch, too.

The current state of the patched branch is recorded indebian/.git−dpm and so is which upstream
branch was recorded patched branch is relative to (to easy future merge−patched−into−debian

git−dpm 2010-07-19 5

GIT-DPM(1) GIT-DPM GIT-DPM(1)

operations).

Options:

−−allow−rev ert
Usually reverting to an old state of the patched branch is not allowed, to avoid mistakes
(like having only pulled the debian branch and forgot to runcheckout−patched). This
option changes that so you can for example drop the last patch in your stack.

−−keep−branch
do not remove an existing patched branch (usually that is removed and can be recreated
with checkout−patchedto avoid stale copies lurking around).

−−amend
Replace the last commit on your debian branch (as git commit −−amend would do). With
the exception that every parent that is an ancestor of or equal to the new patched branch
or the recorded patched branch is omitted. (That is, you lose not only the commit on the
debian branch, but also a previous state of the patched branch if your last commit also
merged the patched branch).

import−new−upstream [options] .orig.tar
Import the contents of the given tarfile (as withimport−tar) and record this branch (as with
new−upstream).

This is roughly equivalent to:
git−dpm import−tar −p upstream filename
git checkout −bupstream
git−dpm new−upstreamfilename

−−detached
Don’t make the new upstream branch an ancestor of the old upstream branch (unless you
readd that with−p).

−p commit-id|−−parent commit-id
Give import−tar additional parents of the new commit to create.

For example if you track upstream’s git repository in some branch, you can name that
here to make it part of the history of your debian branch.

−−rebase−patched
After recording the new upstream branch, rebase the patched branch to the new upstream
branch.

import−tar [options] .tar-file
Create a new commit containing the contents of the given file. Thecommit will not have any par-
ents, unless you give−p options.

−p commit-id|−−parent commit-id
Add the given commit as parent. (Can be specified multiple times).

−m message
Do not start an editor for the commit message, but use the argument instead.

git−dpm 2010-07-19 6

GIT-DPM(1) GIT-DPM GIT-DPM(1)

new−upstream[−−rebase−patched] .orig.tar [commit]

If you changed the upstream branch (upstream|upstream−whatever), git−dpm needs to know
which tarball this branch now corresponds to and you have to rebase your patched branch
(patched|patched−whaterver) to the new upstream branch.

If there is a second argument, this command first replaces your upstream branch with the specified
commit.

Then the new upstream branch is recorded in your debian branch’sdebian/.git−dpm file.

If you specified−−rebase−patched(or short−−rebase),
git−dpm rebase−patchedwill be called to rebase your patched branch on top of the new
upstream branch.

After this (and if the branch then looks like what you want), you still need to callgit−dpm
merge−patched−into−debian(or directlygit−dpm update−patches).

WARNING to avoid any misunderstandings: You have to change the upstream branch before
using this command.It’s your responsibility to ensure the contents of the tarball match those of
the upstream branch.

rebase−patched
Try to rebase your current patched branch (patched|patched−whaterver) to your current current
upstream branch (upstream|upstream−whatever).

If those branches do not yet exist as git branches, they are (re)created from the information
recorded indebian/.git−dpm first.

This is only a convenience wrapper around git rebase that first tries to determine what exactly is to
rebase. Ifthere are any conflicts, git rebase will ask you to resolv them and tell rebase to continue.

After this is finished (and if the branch then looks like what you want), you still need
merge−patched−into−debian(or directlyupdate−patches).

tag [version]
Add tags to the uptream, patched and debian branches.If no version is given, it is taken from
debian/changelog.

Options:

−−refresh
Overwrite the tags if they are already there and differ (except upstream).

−−refresh−upstream
Overwrite the upstream if that is there and differs.

−−allow−nonclean
Don’t error out if patches are not up to date.This is only useful if you are importing his-
torical data and want to tag it.

git−dpm 2010-07-19 7

GIT-DPM(1) GIT-DPM GIT-DPM(1)

apply−patch [options...] [filename]
Switch to the patched branch (assuming it is up to date, use checkout−patched first to make sure or
get an warning), and apply the patch given as argument or from stdin.

−−author author <email>
Override the author to be recorded.

−−defaultauthor author <email>
If no author could be determined from the commit, use this.

−−datedate
Date to record this patch originally be from if non found.

−−dpatch
Parse patch as dpatch patch (Only works for dpatch patches actually being a patch, might
silently fail for others).

−−cdbs Parse patch as cdbs simple−patchsys.mk patch (Only works for dpatch patches actually
being a patch, might silently fail for others).

−−edit Start an editor before doing the commit (In case you are too lazy to amend).

cherry−pick [options...] commit
Recreate the patched branch and cherry−pick the given commit. Thenmerge that back into the
debian branch and update the debian/patches directory (i.e. mostly equivalent to check-
out−patched, git’s cherry−pick, and update−patches).

−−merge−only
Only merge the patched branch back into the debian branch but do not update the patches
directory (You’ll need to run update−patches later to get this done).

−e | −−edit
Passed to git’s cherry−pick: edit the commit message picked.

−s | −−signoff
Passed to git’s cherry−pick: add a Signed−off−by header

−x Passed to git’s cherry−pick: add a line describing what was picked

−m num| −−mainline num
Passed to git’s cherry−pick: allow picking a merge by specifign the parent to look at.

−−repick
Don’t abort if the specified commit is already contained.

−−allow−nonlinear
passed to merge−patched−into−debian and update−patches.

git−dpm 2010-07-19 8

GIT-DPM(1) GIT-DPM GIT-DPM(1)

−−keep−branch
do not remove the patched branch when it is no longer needed.

−−amend
passed to merge−patched−into−debian: amend the last commit in the debian branch.

import−dsc
Import a debian source package from a .dsc file.This can be used to create a new project or to
import a source package into an existing project.

While a possible old state of a project is recorded as parent commit, the state of the old debian
branch is not taken into account. Especially all file deletions and .gitignore files and the like need
to be reapplied/readded afterwards. (Assumptionis that new source package versions from out-
side might change stuff significantly, so old information might more likely be outdated. And reap-
plying it is easier then reverting such changes.)

First step is importing the.orig.tar file. You can either specify a branch to use.Otherwise
import−dsc will look if the previous state of this project already has the needed file so the old
upstream branch can be reused.If there is non, the file will be imported as a new commit, by
default with a possible previous upstream branch as parent.

Thenimport−dsc will try to import the source package in the state asdpkg−source −xwould cre-
ate it. (That is applying the .diff and makingdebian/rules executeable for 1.0 format packages
and replacing thedebian directory with the contents of a .debian.tar and applying possible
debian/patches/seriesfor 3.0 format packages). This is later referred to as verbatim import.

If it is a 1.0 source format package,import−dsc then looks for a set of supported patch systems
and tries to apply those patches. Those are then merged with the verbatim state into the new
debian branch.

Then adebian/.git−dpm file is created and a possible old state of the project added as parent.

Note thatdpkg−source is not used to extract packages, but they are extracted manually. Espe-
cially git−apply is used instead ofpatch. While this generally works (andgit−dpm has some
magic to work around some ofgit−apply’s shortcomings), unclean patches might sometimes need
a −C0 option and then in same cases be applied at different positions than wherepatch would
apply them.

General options:

−b | −−branch branch-name
Don’t look at the current HEAD, but import the package into the git−dpm projectbranch-
nameor create a new project (if that branch does not yet exist).

−−verbatim branch-name
After import−dsc has completed successfully, branch-namewill contain the verbatim
import of the .dsc file. If a branch of that name already exists, the new verbatim commit
will also have the old as parent.(This also causes the verbatim commit not being
amended with other changes, which can result in more commits).

Options about creating the upstream branch:

git−dpm 2010-07-19 9

GIT-DPM(1) GIT-DPM GIT-DPM(1)

−−upstream−to−usecommit
Do not import the .orig.tar nor try to reuse an old import, but always use thecommitspec-
ified.

It is your responsibility that this branch is similar enough to the .orig.tar file in question.
(As usual, similar enough means: Does not miss any files that your patches touch or your
build process requires (or recreates unlessdebian/rules clean removes them again).
Every file different than in .orig.tar or not existing there you must delete in the resulting
debian branch. No patch may touch those files.)

Use with care. Nothing will warn you even if you use the contents of a totally wrong
upstream version.

−−detached−upstream
If importing a .orig.tar as new commit, do not make an possible commit for an old
upstream version parent.

−−upstream−parentcommit
Add commitas (additional) parent if importing a new upstream version.

(This can for example be used to make upstream’s git history part of your package’s his-
tory and thus help git when cherry-picking stuff).

Options about applying patches:

−f | −−force−commit−reuse
Only look at parent and tree and no longer at the description when trying to reuse com-
mits importing patches from previous package versions.

−Cnum| −−patch−contextnum
Passed as−Cnumto git−apply. Specifies the number of context lines that must match.

−−dpatch−allow−empty
Do not error out if a dpatch file does not change anything when treated as patch.

As dpatch files can be arbitrary scripts,git−dpm has some problems detecting if they are
really patches. (It can only cope with patches). If a script that is not a patch is treated as
patch that usually results in patch not modify anything, thus those are forbidden without
this option.

−−patch−systemmode
Specify what patch system is used for source format 1.0 packages.

auto (this is the default)
Try to determine what patch system is used by looking atdebian/rules (and
debian/control).

none Those are not the patches you are looking for.

history Don’t try to find any patches in the .diff (like none). If if the project already
exists and the upstream tarball is the same, create the patched state of the new
one by using the patches of the old one and adding a patch of top bringing it to
the new state.

If you import multiple revisions of some package, where each new revision

git−dpm 2010-07-19 10

GIT-DPM(1) GIT-DPM GIT-DPM(1)

added at most a single change to upstream, this option allows you to almost
automatically create a proper set of patches (ideally only missing descriptions).

If there are same changes and reverts those will be visibile in the patches cre-
ated, so this mode is not very useful in that case.

quilt Extract and apply adebian/patches/seriesquilt like series on top of possible
upstream changes found in the .diff fi le.

quilt−first
As thequilt mode, but apply the patches to an unmodified upstream first and
then cherry−pick the changes found in the .diff fi le.

As this is not the order in which patches are applied in a normal unpack/build
cycle, this will fail if those changes are not distinct enough (for example when
patches depend on changes done in the .diff).

But if the .diff only contains unrelated changes which varies with each version,
this gives a much nicer history, as the commits for the patches can more easily
be reused.

quilt−applied
As thequilt−first mode, but assume the patches are already applied in the .diff,
so apply them on top of an unmodified upstream and then add a commit bringing
it to the state in the .diff. (Or not if that patch would be empty).

dpatch | dpatch−first | dpatch−applied
Like the quilt resp.quilt−first resp.quilt−applied modes, but instead look for
dpatch-style patches indebian/patches/00list.

Note that only patches are supported and not dpatch running other commands.

simple | simple−first | simple−applied
Like the quilt resp.quilt−first resp.quilt−applied modes, but instead assume
debian/patches/contains patches suiteable for cdbs’ssimple−patchsys.mk.

−−patch−author "name<email>"
Set the author for all git commits importing patches.

−−patch−default−author "name<email>"
Set an author for all patches not containing author information (or wheregit−dpm cannot
determine it).

−−edit−patches
For every patch imported, start an editor for the commit message.

the debian/.git−dpm file
You should not need to know about the contents if this file except for debuging git−dpm.

The file contains 8 lines, but future version may contain more.

The first line is hint what this file is about and ignored.

git−dpm 2010-07-19 11

GIT-DPM(1) GIT-DPM GIT-DPM(1)

Then there are 4 git commit ids for the recorded states:

First the state of the patched branch when the patches indebian/patcheswere last updated.

Then the state of the patched branch when it was last merged into the debian branch.

Then the state upstream branch when the patched branch was last merged.

Finally the upstream branch.

The following 3 lines are the filename, the sha1 checksum and the size of the origtarball belonging to the
recorded upstream branch.

SHORTCUTS
Most commands also have shorter aliases, to avoid typing:

update−patches: up,u−p, ci
prepare: prep
checkout−patched: co,c−p
r ebase−patched: r−p
new−upstream−branch: new−upstream, n−u
apply−patch: a−p
import−tar: i−t
import−new−upstream: i−n−u,inu
cherry−pick: c−p

BRANCHES
the upstream branch (upstream|upstream−whatever)

This branch contains the upstream sources. It contents need to be equal enough to the contents in
your upstream tarball.

Equal enough means that dpkg−source should see no difference between your patched tree and
and original tarball unpackaged, the patched applied anddebian/rules cleanrun. Usuallyit is
easiest to just store the verbatim contents of your orig tarball here. Then you can also use it for
pristine tar.

This branch may contain a debian/ subdirectory, which will usually be just ignored.

You can either publish that branch or make it only implicitly visible via thedebian/.git−dpm file
in the debian branch.

While it usually makes sense that newer upstream branches contain older ones, this is not needed.
You should be able to switch from one created yourself or by some foreign-vcs importing tool
generated one to an native upstream branch or vice versa without problems. Note that since the
debian branch has the patched branch as ancestor and the patched branch the upstream branch,
your upstream branches are part of the history of your debian branch.Which has the advantage
that you can recreate the exact state of your branches from your history directly (like git checkout
−b oldstate myoldtagorshaofdebianbranchcommit; git−dpm pr epare ; git checkout unsta-
ble−oldstate) but the disadvantage that to remove those histories from your repository you have to
do some manual work.

git−dpm 2010-07-19 12

GIT-DPM(1) GIT-DPM GIT-DPM(1)

the patched branch (patched|patched−whaterver)
This branch contains your patches to the upstream source. (which of course means it is based on
your upstream branch).

Every commit will be stored as a single patch in the resulting package.

To help git generate a linear patch series, this should ideal be a linear chain of commits, whose
description are helpful for other people.

As this branch is regulary rebased, you should not publish it. Instead you can recreate this branch
usinggit−dpm checkout−patchedusing the information stored indebian/.git−dpm.

You are not allowed to change the contents of thedebian/ subdirectory in this branch.Renaming
files or deleting files usuall causes unecesary large patches.

the debian branch (master|whaterver)
This is the primary branch.

This branch contains thedebian/directory and has the patched branch merged in.

Every change not indebian/, .git* or deleting files must be done in the patched branch.

COPYRIGHT
Copyright © 2009,2010 Bernhard R. Link
This is free software; see the source for copying conditions. There is NO warranty; not even for MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

REPORTING BUGS AND ISSUES
You can report bugs or feature suggestions to gi-dpm−devel@lists.alioth.debian.org or tome. Pleasesend
questions to git−dpm−user@lists.alioth.debian.org or to me at brlink@debian.org.

git−dpm 2010-07-19 13

