
R faq
Frequently Asked Questions on R

Version 1.5-10, 2002-06-13
ISBN 3-901167-51-X

Kurt Hornik

i

Table of Contents

1 Introduction . 1
1.1 Legalese . 1
1.2 Obtaining this document . 1
1.3 Citing this document . 1
1.4 Notation . 1
1.5 Feedback . 1

2 R Basics . 2
2.1 What is R? . 2
2.2 What machines does R run on?. 2
2.3 What is the current version of R?. 3
2.4 How can R be obtained? . 3
2.5 How can R be installed? . 3

2.5.1 How can R be installed (Unix) 3
2.5.2 How can R be installed (Windows) 4
2.5.3 How can R be installed (Macintosh) 4

2.6 Are there Unix binaries for R? . 5
2.7 What documentation exists for R? . 5
2.8 Citing R . 6
2.9 What mailing lists exist for R? . 7
2.10 What is cran? . 8
2.11 Can I use R for commercial purposes? 8

3 R and S . 10
3.1 What is S? . 10
3.2 What is S-Plus? . 10
3.3 What are the differences between R and S? 11

3.3.1 Lexical scoping . 11
3.3.2 Models . 14
3.3.3 Others . 14

3.4 Is there anything R can do that S-Plus cannot? 16
3.5 What is R-plus? . 16

4 R Web Interfaces . 17

5 R Add-On Packages. 18
5.1 Which add-on packages exist for R? . 18
5.2 How can add-on packages be installed? 30
5.3 How can add-on packages be used? . 30
5.4 How can add-on packages be removed? 31
5.5 How can I create an R package? . 32
5.6 How can I contribute to R? . 32

ii

6 R and Emacs . 33
6.1 Is there Emacs support for R? . 33
6.2 Should I run R from within Emacs? . 33
6.3 Debugging R from within Emacs . 34

7 R Miscellanea . 35
7.1 Why does R run out of memory? . 35
7.2 Why does sourcing a correct file fail? . 35
7.3 How can I set components of a list to NULL? 35
7.4 How can I save my workspace? . 35
7.5 How can I clean up my workspace? . 35
7.6 How can I get eval() and D() to work? 36
7.7 Why do my matrices lose dimensions? 36
7.8 How does autoloading work? . 37
7.9 How should I set options? . 37
7.10 How do file names work in Windows? 37
7.11 Why does plotting give a color allocation error? 38
7.12 How do I convert factors to numeric? 38
7.13 Are Trellis displays implemented in R? 38
7.14 What are the enclosing and parent environments? 38
7.15 How can I substitute into a plot label? 39
7.16 What are valid names? . 39
7.17 Are GAMs implemented in R? . 40
7.18 Why is the output not printed when I source() a file? 40
7.19 Why does outer() behave strangely with my function? . . . 40
7.20 Why does the output from anova() depend on the order of

factors in the model? . 41

8 R Programming . 42
8.1 How should I write summary methods? 42
8.2 How can I debug dynamically loaded code? 42
8.3 How can I inspect R objects when debugging? 42
8.4 How can I change compilation flags? . 42

9 R Bugs . 43
9.1 What is a bug? . 43
9.2 How to report a bug . 43

10 Acknowledgments . 45

Chapter 1: Introduction 1

1 Introduction

This document contains answers to some of the most frequently asked questions about
R.

1.1 Legalese

This document is copyright c© 1998–2002 by Kurt Hornik.
This document is free software; you can redistribute it and/or modify it under the terms

of the gnu General Public License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the gnu General Public License for more details.

A copy of the gnu General Public License is available via WWW at
http://www.gnu.org/copyleft/gpl.html.

You can also obtain it by writing to the Free Software Foundation, Inc., 59 Temple Place
— Suite 330, Boston, MA 02111-1307, USA.

1.2 Obtaining this document

The latest version of this document is always available from
http://www.ci.tuwien.ac.at/~hornik/R/

From there, you can obtain versions converted to plain ascii text, DVI, gnu info, html,
PDF, PostScript as well as the Texinfo source used for creating all these formats using the
gnu Texinfo system.

You can also obtain the R faq from the ‘doc/FAQ’ subdirectory of a cran site (see
Section 2.10 [What is CRAN?], page 8).

1.3 Citing this document

In publications, please refer to this faq as Hornik (2002), “The R faq”, and give the
above, official url and the ISBN 3-901167-51-X.

1.4 Notation

Everything should be pretty standard. ‘R>’ is used for the R prompt, and a ‘$’ for the
shell prompt (where applicable).

1.5 Feedback

Feedback is of course most welcome.
In particular, note that I do not have access to Windows or Mac systems. Features

specific to the Windows and Mac OS ports of R are described in the “R for Windows faq”
and the “R for Macintosh faq/DOC”. If you have information on Mac or Windows systems
that you think should be added to this document, please let me know.

http://www.gnu.org/copyleft/gpl.html
http://www.ci.tuwien.ac.at/~hornik/R/
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.txt
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.dvi.gz
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.info.gz
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.html
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.pdf
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.ps.gz
http://www.ci.tuwien.ac.at/~hornik/R/R-FAQ.texi
http://texinfo.org/
http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html
http://cran.r-project.org/bin/macos/rmac-FAQ.html

Chapter 2: R Basics 2

2 R Basics

2.1 What is R?

R is a system for statistical computation and graphics. It consists of a language plus a
run-time environment with graphics, a debugger, access to certain system functions, and
the ability to run programs stored in script files.

The design of R has been heavily influenced by two existing languages: Becker, Chambers
& Wilks’ S (see Section 3.1 [What is S?], page 10) and Sussman’s Scheme. Whereas the
resulting language is very similar in appearance to S, the underlying implementation and
semantics are derived from Scheme. See Section 3.3 [What are the differences between R
and S?], page 11, for further details.

The core of R is an interpreted computer language which allows branching and looping
as well as modular programming using functions. Most of the user-visible functions in R
are written in R. It is possible for the user to interface to procedures written in the C, C++,
or FORTRAN languages for efficiency. The R distribution contains functionality for a large
number of statistical procedures. Among these are: linear and generalized linear models,
nonlinear regression models, time series analysis, classical parametric and nonparametric
tests, clustering and smoothing. There is also a large set of functions which provide a
flexible graphical environment for creating various kinds of data presentations. Additional
modules (“add-on packages”) are available for a variety of specific purposes (see Chapter 5
[R Add-On Packages], page 18).

R was initially written by Ross Ihaka and Robert Gentleman at the Department of
Statistics of the University of Auckland in Auckland, New Zealand. In addition, a large
group of individuals has contributed to R by sending code and bug reports.

Since mid-1997 there has been a core group (the “R Core Team”) who can modify the
R source code CVS archive. The group currently consists of Doug Bates, John Chambers,
Peter Dalgaard, Robert Gentleman, Kurt Hornik, Stefano Iacus, Ross Ihaka, Friedrich
Leisch, Thomas Lumley, Martin Maechler, Guido Masarotto, Paul Murrell, Brian Ripley,
Duncan Temple Lang, and Luke Tierney.

R has a home page at http://www.r-project.org/. It is free software distributed
under a gnu-style copyleft, and an official part of the gnu project (“gnu S”).

2.2 What machines does R run on?

R is being developed for the Unix, Windows and Mac families of operating systems.

The current version of R will configure and build under a number of common Unix plat-
forms including i386-freebsd, cpu-linux-gnu for the i386, alpha, arm, hppa, ia64, m68k, pow-
erpc, and sparc CPUs (see e.g. http://buildd.debian.org/build.php?&pkg=r-base),
i386-sun-solaris, powerpc-apple-darwin, mips-sgi-irix, alpha-dec-osf4, rs6000-ibm-aix, hppa-
hp-hpux, and sparc-sun-solaris.

If you know about other platforms, please drop us a note.

http://www.cs.indiana.edu/scheme-repository/home.html
mailto:Ross.Ihaka@r-project.org
mailto:Robert.Gentleman@r-project.org
http://www.r-project.org/
http://buildd.debian.org/build.php?&pkg=r-base

Chapter 2: R Basics 3

2.3 What is the current version of R?

The current released version is 1.5.1. Conforming to this ‘major.minor.patchlevel’ num-
bering scheme, there are three development versions of R, working towards the next patch
(‘r-patched’), minor (‘r-devel’), and major (‘r-ng’) releases of R, respectively. Version r-
patched is for bug fixes mostly. New features are typically introduced in r-devel. Version
r-ng will eventually become the next generation of R.

2.4 How can R be obtained?

Sources, binaries and documentation for R can be obtained via cran, the “Comprehen-
sive R Archive Network” (see Section 2.10 [What is CRAN?], page 8).

Sources are also available via anonymous rsync. Use
rsync -rC rsync.r-project.org::module R

to create a copy of the source tree specified by module in the subdirectory ‘R’ of the current
directory, where module specifies one of the four existing flavors of the R sources, and can
be one of ‘r-release’ (current released version), ‘r-patched’ (patched released version),
and ‘r-devel’ (development version, less stable), and ‘r-ng’ (next generation, unstable).
The rsync trees are created directly from the master CVS archive and are updated hourly.
The ‘-C’ option in the rsync command is to cause it to skip the CVS directories. Further
information on rsync is available at http://rsync.samba.org/rsync/.

2.5 How can R be installed?

2.5.1 How can R be installed (Unix)

If binaries are available for your platform (see Section 2.6 [Are there Unix binaries for
R?], page 5), you can use these, following the instructions that come with them.

Otherwise, you can compile and install R yourself, which can be done very easily under
a number of common Unix platforms (see Section 2.2 [What machines does R run on?],
page 2). The file ‘INSTALL’ that comes with the R distribution contains a brief introduction,
and the “R Installation and Administration” guide (see Section 2.7 [What documentation
exists for R?], page 5) has full details.

Note that you need a FORTRAN compiler or f2c in addition to a C compiler to build R.
Also, you need Perl version 5 to build the R object documentations. (If this is not available
on your system, you can obtain a PDF version of the object reference manual via cran.)

In the simplest case, untar the R source code, change to the directory thus created, and
issue the following commands (at the shell prompt):

$./configure
$ make

If these commands execute successfully, the R binary and a shell script font-end called
‘R’ are created and copied to the ‘bin’ directory. You can copy the script to a place where
users can invoke it, for example to ‘/usr/local/bin’. In addition, plain text help pages as
well as html and LaTEX versions of the documentation are built.

http://rsync.samba.org/rsync/

Chapter 2: R Basics 4

Use make dvi to create DVI versions of the R manuals, such as ‘refman.dvi’ (an R object
reference index) and ‘R-exts.dvi’, the “R Extension Writers Guide”, in the ‘doc/manual’
subdirectory. These files can be previewed and printed using standard programs such as
xdvi and dvips. You can also use make pdf to build PDF (Portable Document Format)
version of the manuals, and view these using e.g. Acrobat. Manuals written in the gnu
Texinfo system can also be converted to info files suitable for reading online with Emacs
or stand-alone gnu Info; use make info to create these versions (note that this requires
makeinfo version 4).

Finally, use make check to find out whether your R system works correctly.
You can also perform a “system-wide” installation using make install. By default, this

will install to the following directories:

‘${prefix}/bin’
the front-end shell script

‘${prefix}/man/man1’
the man page

‘${prefix}/lib/R’
all the rest (libraries, on-line help system, . . .). This is the “R Home Directory”
(R_HOME) of the installed system.

In the above, prefix is determined during configuration (typically ‘/usr/local’) and can
be set by running configure with the option

$./configure --prefix=/where/you/want/R/to/go

(E.g., the R executable will then be installed into ‘/where/you/want/R/to/go/bin’.)
To install DVI, info and PDF versions of the manuals, use make install-dvi, make

install-info and make install-pdf, respectively.

2.5.2 How can R be installed (Windows)

The ‘bin/windows’ directory of a cran site contains binaries for a base distribution and
a large number of add-on packages from cran to run on Windows 95, 98, ME, NT4, 2000,
and XP (at least) on Intel and clones (but not on other platforms). The Windows version
of R was created by Robert Gentleman, and is now being developed and maintained by
Duncan Murdoch and Brian D. Ripley.

For most installations the installer SetupR.exe will be the easiest tool to use.
See the “R for Windows faq” for more details.

2.5.3 How can R be installed (Macintosh)

The ‘bin/macos’ directory of a cran site contains bin-hexed (‘hqx’) and stuffit (‘sit’)
archives for a base distribution and a large number of add-on packages to run under MacOS
8.6 to MacOS 9.1 or MacOS X natively. The Mac version of R and the Mac binaries are
maintained by Stefano Iacus.

The “R for Macintosh faq/DOC” has more details.
Binaries of base distributions for MacOS X (Darwin) with X11 are made available by

Jan de Leeuw in the ‘bin/macosx’ directory of a cran site.

mailto:murdoch@stats.uwo.ca
mailto:Brian.Ripley@r-project.org
http://www.stats.ox.ac.uk/pub/R/rw-FAQ.html
mailto:Stefano.Iacus@r-project.org
http://www.eco-dip.unimi.it/R/rmac-FAQ.html
mailto:deleeuw@stat.ucla.edu

Chapter 2: R Basics 5

2.6 Are there Unix binaries for R?

The ‘bin/linux’ directory of a cran site contains Debian potato/woody packages for the
i386 platform (now part of the Debian distribution and maintained by Doug Bates and Dirk
Eddelbuettel, respectively), Red Hat 6.x i386, 7.x i386 and 7.x alpha packages (maintained
by Stephen Eglen, Martyn Plummer and Naoki Takebayashi, respectively), SuSE 7.2 i386
packages by Albrecht Gebhardt, Mandrake 8.1 and 8.2 i386 packages by Michele Alzetta,
and LinuxPPC 5.0 RPMs by Alex Buerkle.

The Debian packages can be accessed through APT, the Debian package maintenance
tool. Simply add the line

deb http://cran.r-project.org/bin/linux/debian distribution main

(where distribution is either ‘stable’ or ‘testing’; feel free to use a cran mirror instead of
the master) to the file ‘/etc/apt/sources.list’. Once you have added that line the pro-
grams apt-get, apt-cache, and dselect (using the apt access method) will automatically
detect and install updates of the R packages.

The ‘bin/osf’ directory of a cran site contains RPMs by Albrecht Gebhardt for alpha
systems running Alpha Unix (OSF/Tru64).

No other binary distributions have thus far been made publically available.

2.7 What documentation exists for R?

Online documentation for most of the functions and variables in R exists, and can be
printed on-screen by typing help(name) (or ?name) at the R prompt, where name is the
name of the topic help is sought for. (In the case of unary and binary operators and
control-flow special forms, the name may need to be be quoted.)

This documentation can also be made available as one reference manual for on-line
reading in html and PDF formats, and as hardcopy via LaTEX, see Section 2.5 [How can
R be installed?], page 3. An up-to-date html version is always available for web browsing
at http://stat.ethz.ch/R/manual/.

The R distribution also comes with the following manuals.
• “An Introduction to R” (‘R-intro’) includes information on data types, programming

elements, statistical modeling and graphics. This document is based on the “Notes on
S-Plus” by Bill Venables and David Smith.

• “Writing R Extensions” (‘R-exts’) currently describes the process of creating R add-on
packages, writing R documentation, R’s system and foreign language interfaces, and
the R api.

• “R Data Import/Export” (‘R-data’) is a guide to importing and exporting data to and
from R.

• “The R Language Definition” (‘R-lang’), a first version of the “Kernighan & Ritchie
of R”, explains evaluation, parsing, object oriented programming, computing on the
language, and so forth.

• “R Installation and Administration” (‘R-admin’).

In addition to material written specifically for R, documentation for S/S-Plus (see
Chapter 3 [R and S], page 10) can be used in combination with this faq (see Section 3.3
[What are the differences between R and S?], page 11). We recommend

http://stat.ethz.ch/R/manual/

Chapter 2: R Basics 6

W. N. Venables and B. D. Ripley (1999), “Modern Applied Statistics with
S-Plus. Third Edition”. Springer, ISBN 0-387-98825-4.

This has a home page at http://www.stats.ox.ac.uk/pub/MASS3/ providing additional
material, in particular “R Complements” which describe how to use the book with R. These
complements contain both descriptions of some of the differences between R and S-Plus,
and the modifications needed to run the examples in the book. Its companion is

W. N. Venables and B. D. Ripley (2000), “S Programming”. Springer, ISBN
0-387-98966-8.

This provides an in-depth guide to writing software in the S language which forms the basis
of both the commercial S-Plus and the Open Source R data analysis software systems. See
http://www.stats.ox.ac.uk/pub/MASS3/Sprog/ for more information.

More introductory books are

P. Spector (1994), “An introduction to S and S-Plus”, Duxbury Press.

A. Krause and M. Olsen (1997), “The Basics of S and S-Plus”, Springer.

The book

J. C. Pinheiro and D. M. Bates (2000), “Mixed-Effects Models in S and S-
Plus”, Springer, ISBN 0-387-98957-0

provides a comprehensive guide to the use of the nlme package for linear and nonlinear
mixed-effects models. This has a home page at http://nlme.stat.wisc.edu/MEMSS/.

As an example of how R can be used in teaching an advanced introductory statistics
course, see

D. Nolan and T. Speed (2000), “Stat Labs: Mathematical Statistics Through
Applications”, Springer Texts in Statistics, ISBN 0-387-98974-9

This integrates theory of statistics with the practice of statistics through a collection of
case studies (“labs”), and uses R to analyze the data. More information can be found at
http://www.stat.Berkeley.EDU/users/statlabs/.

Last, but not least, Ross’ and Robert’s experience in designing and implementing R is
described in Ihaka & Gentleman (1996), “R: A Language for Data Analysis and Graphics”,
Journal of Computational and Graphical Statistics, 5, 299–314. See Section 2.8 [Citing R],
page 6.

An annotated bibliography (BibTEX format) of R-related publications which includes
most of the above references can be found at

http://www.r-project.org/doc/bib/R.bib

2.8 Citing R

To cite R in publications, use

http://www.stats.ox.ac.uk/pub/MASS3/
http://www.stats.ox.ac.uk/pub/MASS3/Sprog/
http://nlme.stat.wisc.edu/MEMSS/
http://www.stat.Berkeley.EDU/users/statlabs/
http://www.amstat.org/publications/jcgs/
http://www.r-project.org/doc/bib/R.bib

Chapter 2: R Basics 7

@article{,
author = {Ross Ihaka and Robert Gentleman},
title = {R: A Language for Data Analysis and Graphics},
journal = {Journal of Computational and Graphical Statistics},
year = 1996,
volume = 5,
number = 3,
pages = {299--314}

}

2.9 What mailing lists exist for R?

Thanks to Martin Maechler, there are three mailing lists devoted to R.

r-announce
This list is for announcements about the development of R and the availability
of new code.

r-devel This list is for discussions about the future of R and pre-testing of new versions.
It is meant for those who maintain an active position in the development of R.

r-help The ‘main’ R mailing list, for announcements about the development of R and
the availability of new code, questions and answers about problems and solu-
tions using R, enhancements and patches to the source code and documentation
of R, comparison and compatibility with S and S-Plus, and for the posting of
nice examples and benchmarks.

Note that the r-announce list is gatewayed into r-help, so you don’t need to subscribe to
both of them.

Send email to r-help@lists.r-project.org to reach everyone on the r-help mailing
list. To subscribe (or unsubscribe) to this list send ‘subscribe’ (or ‘unsubscribe’) in
the body of the message (not in the subject!) to r-help-request@lists.r-project.org.
Information about the list can be obtained by sending an email with ‘info’ as its contents
to r-help-request@lists.r-project.org.

Subscription and posting to the other lists is done analogously, with ‘r-help’ replaced by
‘r-announce’ and ‘r-devel’, respectively.

Subscriptions to ‘r-help’ and ‘r-devel’ are also available in digest format, see the
‘doc/html/mail.html’ file in cran for more information.

It is recommended that you send mail to r-help rather than only to the R Core developers
(who are also subscribed to the list, of course). This may save them precious time they can
use for constantly improving R, and will typically also result in much quicker feedback for
yourself.

Of course, in the case of bug reports it would be very helpful to have code which reliably
reproduces the problem. Also, make sure that you include information on the system and
version of R being used. See Chapter 9 [R Bugs], page 43 for more details.

Archives of the above three mailing lists are made available on the net in a monthly
schedule via the ‘doc/html/mail.html’ file in cran. Searchable archives of the lists are
available via http://maths.newcastle.edu.au/~rking/R/.

mailto:Martin.Maechler@r-project.org
mailto:r-help@lists.r-project.org
mailto:r-help-request@lists.r-project.org
mailto:r-help-request@lists.r-project.org
http://maths.newcastle.edu.au/~rking/R/

Chapter 2: R Basics 8

The R Core Team can be reached at r-core@lists.r-project.org for comments and
reports.

2.10 What is cran?

The “Comprehensive R Archive Network” (cran) is a collection of sites which carry
identical material, consisting of the R distribution(s), the contributed extensions, docu-
mentation for R, and binaries.

The cran master site at TU Wien, Austria, can be found at the url

http://cran.r-project.org/

and is currently being mirrored daily at
http://cran.at.r-project.org/ (TU Wien, Austria)
http://cran.au.r-project.org/ (PlanetMirror, Australia)
http://cran.br.r-project.org/ (Universidade Federal de Paraná,

Brazil)
http://cran.ch.r-project.org/ (ETH Zürich, Switzerland)
http://cran.de.r-project.org/ (APP, Germany)
http://cran.dk.r-project.org/ (SunSITE, Denmark)
http://cran.hu.r-project.org/ (Semmelweis U, Hungary)
http://cran.uk.r-project.org/ (U of Bristol, United Kingdom)
http://cran.us.r-project.org/ (U of Wisconsin, USA)
http://cran.za.r-project.org/ (Rhodes U, South Africa)

Please use the cran site closest to you to reduce network load.

From cran, you can obtain the latest official release of R, daily snapshots of R (copies of
the current CVS trees), as gzipped and bzipped tar files, a wealth of additional contributed
code, as well as prebuilt binaries for various operating systems (Linux, Digital Unix, and
MS Windows). cran also provides access to documentation on R, existing mailing lists and
the R Bug Tracking system.

To “submit” to cran, simply upload to ftp://cran.r-project.org/incoming/ and
send an email to cran@r-project.org.

Note: It is very important that you indicate the copyright (license) information
(gpl, bsd, Artistic, . . .) in your submission.

Please always use the url of the master site when referring to cran.

2.11 Can I use R for commercial purposes?

R is released under the GNU General Public License (GPL). If you have any questions
regarding the legality of using R in any particular situation you should bring it up with
your legal counsel. We are in no position to offer legal advice.

It is the opinion of the R Core Team that one can use R for commercial purposes (e.g.,
in business or in consulting). The GPL, like all Open Source licenses, permits all and any
use of the package. It only restricts distribution of R or of other programs containing code
from R. This is made clear in clause 6 (“No Discrimination Against Fields of Endeavor”)
of the Open Source Definition:

mailto:r-core@lists.r-project.org
http://cran.r-project.org/
http://cran.at.r-project.org/
http://cran.au.r-project.org/
http://cran.br.r-project.org/
http://cran.ch.r-project.org/
http://cran.de.r-project.org/
http://cran.dk.r-project.org/
http://cran.hu.r-project.org/
http://cran.uk.r-project.org/
http://cran.us.r-project.org/
http://cran.za.r-project.org/
ftp://cran.r-project.org/incoming/
mailto:cran@r-project.org
http://www.gnu.org/copyleft/gpl.html
http://www.opensource.org/docs/definition.html

Chapter 2: R Basics 9

The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.

It is also explicitly stated in clause 0 of the GPL, which says in part
Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program.

Most add-on packages, including all recommended ones, also explicitly allow commercial
use in this way. A few packages are restricted to “non-commercial use”; you should contact
the author to clarify whether these may be used or seek the advice of your legal counsel.

None of the discussion in this section constitutes legal advice. The R Core Team does
not provide legal advice under any circumstances.

Chapter 3: R and S 10

3 R and S

3.1 What is S?

S is a very high level language and an environment for data analysis and graphics.
In 1998, the Association for Computing Machinery (acm) presented its Software System
Award to John M. Chambers, the principal designer of S, for

the S system, which has forever altered the way people analyze, visualize, and
manipulate data . . .
S is an elegant, widely accepted, and enduring software system, with conceptual
integrity, thanks to the insight, taste, and effort of John Chambers.

The evolution of the S language is characterized by four books by John Chambers and
coauthors, which are also the primary references for S.
• Richard A. Becker and John M. Chambers (1984), “S. An Interactive Environment for

Data Analysis and Graphics,” Monterey: Wadsworth and Brooks/Cole.
This is also referred to as the “Brown Book”, and of historical interest only.

• Richard A. Becker, John M. Chambers and Allan R. Wilks (1988), “The New S Lan-
guage,” London: Chapman & Hall.
This book is often called the “Blue Book”, and introduced what is now known as S
version 2.

• John M. Chambers and Trevor J. Hastie (1992), “Statistical Models in S,” London:
Chapman & Hall.
This is also called the “White Book”, and introduced S version 3, which added struc-
tures to facilitate statistical modeling in S.

• John M. Chambers (1998), “Programming with Data,” New York: Springer, ISBN
0-387-98503-4 (http://cm.bell-labs.com/cm/ms/departments/sia/Sbook/).
This “Green Book” describes version 4 of S, a major revision of S designed by John
Chambers to improve its usefulness at every stage of the programming process.

See http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html for further
information on “Stages in the Evolution of S”.

There is a huge amount of user-contributed code for S, available at the S Repository at
cmu.

3.2 What is S-Plus?

S-Plus is a value-added version of S sold by Insightful Corporation. Based on the
S language, S-Plus provides functionality in a wide variety of areas, including robust
regression, modern non-parametric regression, time series, survival analysis, multivariate
analysis, classical statistical tests, quality control, and graphics drivers. Add-on modules
add additional capabilities for wavelet analysis, spatial statistics, GARCH models, and
design of experiments.

See the Insightful S-Plus page for further information.

http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html
http://lib.stat.cmu.edu/S/
http://www.insightful.com/products/splus/

Chapter 3: R and S 11

3.3 What are the differences between R and S?

We can regard S as a language with three current implementations or “engines”, the
“old S engine” (S version 3; S-Plus 3.x and 4.x), the “new S engine” (S version 4; S-Plus
5.x and above), and R. Given this understanding, asking for “the differences between R and
S” really amounts to asking for the specifics of the R implementation of the S language,
i.e., the difference between the R and S engines.

For the remainder of this section, “S” refers to the S engines and not the S language.

3.3.1 Lexical scoping

Contrary to other implementations of the S language, R has adopted the evaluation
model of Scheme.

This difference becomes manifest when free variables occur in a function. Free variables
are those which are neither formal parameters (occurring in the argument list of the func-
tion) nor local variables (created by assigning to them in the body of the function). Whereas
S (like C) by default uses static scoping, R (like Scheme) has adopted lexical scoping. This
means the values of free variables are determined by a set of global variables in S, but in R
by the bindings that were in effect at the time the function was created.

Consider the following function:

cube <- function(n) {
sq <- function() n * n
n * sq()

}

Under S, sq() does not “know” about the variable n unless it is defined globally:

S> cube(2)
Error in sq(): Object "n" not found
Dumped
S> n <- 3
S> cube(2)
[1] 18

In R, the “environment” created when cube() was invoked is also looked in:

R> cube(2)
[1] 8

As a more “interesting” real-world problem, suppose you want to write a function which
returns the density function of the r-th order statistic from a sample of size n from a (con-
tinuous) distribution. For simplicity, we shall use both the cdf and pdf of the distribution
as explicit arguments. (Example compiled from various postings by Luke Tierney.)

The S-Plus documentation for call() basically suggests the following:

Chapter 3: R and S 12

dorder <- function(n, r, pfun, dfun) {
f <- function(x) NULL
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
PF <- call(substitute(pfun), as.name("x"))
DF <- call(substitute(dfun), as.name("x"))
f[[length(f)]] <-

call("*", con,
call("*", call("^", PF, r - 1),

call("*", call("^", call("-", 1, PF), n - r),
DF)))

f
}

Rather tricky, isn’t it? The code uses the fact that in S, functions are just lists of special
mode with the function body as the last argument, and hence does not work in R (one
could make the idea work, though).

A version which makes heavy use of substitute() and seems to work under both S and
R is

dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
eval(substitute(function(x) K * PF(x)^a * (1 - PF(x))^b * DF(x),

list(PF = substitute(pfun), DF = substitute(dfun),
a = r - 1, b = n - r, K = con)))

}

(the eval() is not needed in S).

However, in R there is a much easier solution:
dorder <- function(n, r, pfun, dfun) {

con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
function(x) {
con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)

}
}

This seems to be the “natural” implementation, and it works because the free variables in
the returned function can be looked up in the defining environment (this is lexical scope).

Note that what you really need is the function closure, i.e., the body along with all
variable bindings needed for evaluating it. Since in the above version, the free variables in
the value function are not modified, you can actually use it in S as well if you abstract out
the closure operation into a function MC() (for “make closure”):

dorder <- function(n, r, pfun, dfun) {
con <- round(exp(lgamma(n + 1) - lgamma(r) - lgamma(n - r + 1)))
MC(function(x) {

con * pfun(x)^(r - 1) * (1 - pfun(x))^(n - r) * dfun(x)
},
list(con = con, pfun = pfun, dfun = dfun, r = r, n = n))

}

Given the appropriate definitions of the closure operator, this works in both R and S,
and is much “cleaner” than a substitute/eval solution (or one which overrules the default

Chapter 3: R and S 13

scoping rules by using explicit access to evaluation frames, as is of course possible in both
R and S).

For R, MC() simply is
MC <- function(f, env) f

(lexical scope!), a version for S is
MC <- function(f, env = NULL) {
env <- as.list(env)
if (mode(f) != "function")

stop(paste("not a function:", f))
if (length(env) > 0 && any(names(env) == ""))

stop(paste("not all arguments are named:", env))
fargs <- if(length(f) > 1) f[1:(length(f) - 1)] else NULL
fargs <- c(fargs, env)
if (any(duplicated(names(fargs))))

stop(paste("duplicated arguments:", paste(names(fargs)),
collapse = ", "))

fbody <- f[length(f)]
cf <- c(fargs, fbody)
mode(cf) <- "function"
return(cf)

}

Similarly, most optimization (or zero-finding) routines need some arguments to be opti-
mized over and have other parameters that depend on the data but are fixed with respect to
optimization. With R scoping rules, this is a trivial problem; simply make up the function
with the required definitions in the same environment and scoping takes care of it. With S,
one solution is to add an extra parameter to the function and to the optimizer to pass in
these extras, which however can only work if the optimizer supports this.

Lexical scoping allows using function closures and maintaining local state. A simple
example (taken from Abelson and Sussman) is obtained by typing demo(scoping) at the
R prompt. Further information is provided in the standard R reference “R: A Language
for Data Analysis and Graphics” (see Section 2.7 [What documentation exists for R?],
page 5) and in Robert Gentleman and Ross Ihaka (2000), “Lexical Scope and Statistical
Computing”, Journal of Computational and Graphical Statistics, 9, 491–508.

Lexical scoping also implies a further major difference. Whereas S stores all objects as
separate files in a directory somewhere (usually ‘.Data’ under the current directory), R does
not. All objects in R are stored internally. When R is started up it grabs a very large piece
of memory and uses it to store the objects. R performs its own memory management of this
piece of memory. Having everything in memory is necessary because it is not really possible
to externally maintain all relevant “environments” of symbol/value pairs. This difference
also seems to make R faster than S.

The down side is that if R crashes you will lose all the work for the current session. Saving
and restoring the memory “images” (the functions and data stored in R’s internal memory
at any time) can be a bit slow, especially if they are big. In S this does not happen, because
everything is saved in disk files and if you crash nothing is likely to happen to them. (In fact,
one might conjecture that the S developers felt that the price of changing their approach to
persistent storage just to accommodate lexical scope was far too expensive.) Hence, when

http://www.amstat.org/publications/jcgs/

Chapter 3: R and S 14

doing important work, you might consider saving often (see Section 7.4 [How can I save my
workspace?], page 35) to safeguard against possible crashes. Other possibilities are logging
your sessions, or have your R commands stored in text files which can be read in using
source().

Note: If you run R from within Emacs (see Chapter 6 [R and Emacs], page 33),
you can save the contents of the interaction buffer to a file and conveniently
manipulate it using ess-transcript-mode, as well as save source copies of all
functions and data used.

3.3.2 Models

There are some differences in the modeling code, such as
• Whereas in S, you would use lm(y ~ x^3) to regress y on x^3, in R, you have to insulate

powers of numeric vectors (using I()), i.e., you have to use lm(y ~ I(x^3)).
• The glm family objects are implemented differently in R and S. The same functionality

is available but the components have different names.
• Option na.action is set to "na.omit" by default in R, but not set in S.
• Terms objects are stored differently. In S a terms object is an expression with attributes,

in R it is a formula with attributes. The attributes have the same names but are
mostly stored differently. The major difference in functionality is that a terms object
is subscriptable in S but not in R. If you can’t imagine why this would matter then
you don’t need to know.

• Finally, in R y~x+0 is an alternative to y~x-1 for specifying a model with no intercept.
Models with no parameters at all can be specified by y~0.

3.3.3 Others

Apart from lexical scoping and its implications, R follows the S language definition in
the Blue and White Books as much as possible, and hence really is an “implementation” of
S. There are some intentional differences where the behavior of S is considered “not clean”.
In general, the rationale is that R should help you detect programming errors, while at the
same time being as compatible as possible with S.

Some known differences are the following.
• In R, if x is a list, then x[i] <- NULL and x[[i]] <- NULL remove the specified elements

from x. The first of these is incompatible with S, where it is a no-op. (Note that you
can set elements to NULL using x[i] <- list(NULL).)

• In S, the functions named .First and .Last in the ‘.Data’ directory can be used
for customizing, as they are executed at the very beginning and end of a session,
respectively.
In R, the startup mechanism is as follows. R first sources the system startup file
‘$R_HOME/library/base/R/Rprofile’. Then, it searches for a site-wide startup pro-
file unless the command line option ‘--no-site-file’ was given. The name of this file
is taken from the value of the R_PROFILE environment variable. If that variable is un-
set, the default is ‘$R_HOME/etc/Rprofile.site’ (‘$R_HOME/etc/Rprofile’ in versions
prior to 1.4.0). This code is loaded in package base. Then, unless ‘--no-init-file’

Chapter 3: R and S 15

was given, R searches for a file called ‘.Rprofile’ in the current directory or in the
user’s home directory (in that order) and sources it into the user workspace. It then
loads a saved image of the user workspace from ‘.RData’ in case there is one (unless
‘--no-restore’ was specified). If needed, the functions .First() and .Last() should
be defined in the appropriate startup profiles.

• In R, T and F are just variables being set to TRUE and FALSE, respectively, but are not
reserved words as in S and hence can be overwritten by the user. (This helps e.g. when
you have factors with levels "T" or "F".) Hence, when writing code you should always
use TRUE and FALSE.

• In R, dyn.load() can only load shared libraries, as created for example by R CMD SHLIB.

• In R, attach() currently only works for lists and data frames, but not for directories.
(In fact, attach() also works for R data files created with save(), which is analogous
to attaching directories in S.) Also, you cannot attach at position 1.

• Categories do not exist in R, and never will as they are deprecated now in S. Use factors
instead.

• In R, For() loops are not necessary and hence not supported.

• In R, assign() uses the argument ‘envir=’ rather than ‘where=’ as in S.

• The random number generators are different, and the seeds have different length.

• R passes integer objects to C as int * rather than long * as in S.

• R has no single precision storage mode. However, as of version 0.65.1, there is a single
precision interface to C/FORTRAN subroutines.

• By default, ls() returns the names of the objects in the current (under R) and global
(under S) environment, respectively. For example, given

x <- 1; fun <- function() {y <- 1; ls()}

then fun() returns "y" in R and "x" (together with the rest of the global environment)
in S.

• R allows for zero-extent matrices (and arrays, i.e., some elements of the dim attribute
vector can be 0). This has been determined a useful feature as it helps reducing the
need for special-case tests for empty subsets. For example, if x is a matrix, x[, FALSE]
is not NULL but a “matrix” with 0 columns. Hence, such objects need to be tested for
by checking whether their length() is zero (which works in both R and S), and not
using is.null().

• Named vectors are considered vectors in R but not in S (e.g., is.vector(c(a = 1:3))
returns FALSE in S and TRUE in R).

• Data frames are not considered as matrices in R (i.e., if DF is a data frame, then
is.matrix(DF) returns FALSE in R and TRUE in S).

• R by default uses treatment contrasts in the unordered case, whereas S uses the Helmert
ones. This is a deliberate difference reflecting the opinion that treatment contrasts are
more natural.

• In R, the last argument (which corresponds to the right hand side) of an assignment
function must be named ‘value’. E.g., fun(a) <- b is evaluated as (fun<-)(a, value
= b).

Chapter 3: R and S 16

• In S, substitute() searches for names for substitution in the given expression in
three places: the actual and the default arguments of the matching call, and the local
frame (in that order). R looks in the local frame only, with the special rule to use
a “promise” if a variable is not evaluated. Since the local frame is initialized with
the actual arguments or the default expressions, this is usually equivalent to S, until
assignment takes place.

• In R, eval(EXPR, sys.parent()) does not work. Instead, one should use either
eval(EXPR, sys.frame(sys.parent())), which also works in S, or eval(EXPR,
parent.frame()), which is more efficient but does not work in S.

• In S, the index variable in a for() loop is local to the inside of the loop. In R it is
local to the environment where the for() statement is executed.

• In S, tapply(simplify=TRUE) returns a vector where R returns a one-dimensional
array (which can have named dimnames).

• In S(-Plus) the C locale is used, whereas in R the current operating system locale is
used for determining which characters are alphanumeric and how they are sorted. This
affects the set of valid names for R objects (for example accented chars may be allowed
in R) and ordering in sorts and comparisons (such as whether "aA" < "Bb" is true or
false). From version 1.2.0 the locale can be (re-)set in R by the Sys.setlocale()
function.

• In S, missing(arg) remains TRUE if arg is subsequently modified; in R it doesn’t.
• From R version 1.3.0, data.frame strips I() when creating (column) names.

There are also differences which are not intentional, and result from missing or incorrect
code in R. The developers would appreciate hearing about any deficiencies you may find
(in a written report fully documenting the difference as you see it). Of course, it would be
useful if you were to implement the change yourself and make sure it works.

3.4 Is there anything R can do that S-Plus cannot?

Since almost anything you can do in R has source code that you could port to S-Plus
with little effort there will never be much you can do in R that you couldn’t do in S-Plus if
you wanted to. (Note that using lexical scoping may simplify matters considerably, though.)

R offers several graphics features that S-Plus does not, such as finer handling of line
types, more convenient color handling (via palettes), gamma correction for color, and, most
importantly, mathematical annotation in plot texts, via input expressions reminiscent of
TEX constructs. See the help page for plotmath, which features an impressive on-line
example. More details can be found in Paul Murrell and Ross Ihaka (2000), “An Approach
to Providing Mathematical Annotation in Plots”, Journal of Computational and Graphical
Statistics, 9, 582–599.

3.5 What is R-plus?

There is no such thing.

http://www.amstat.org/publications/jcgs/
http://www.amstat.org/publications/jcgs/

Chapter 4: R Web Interfaces 17

4 R Web Interfaces

Rcgi is a CGI WWW interface to R by Mark J. Ray. Recent versions have the ability to
use “embedded code”: you can mix user input and code, allowing the html author to do
anything from load in data sets to enter most of the commands for users without writing
CGI scripts. Graphical output is possible in PostScript or GIF formats and the executed
code is presented to the user for revision.

See http://stats.mth.uea.ac.uk/Rcgi/ for more information.
Rweb is developed and maintained by Jeff Banfield. The Rweb Home Page provides

access to all three versions of Rweb—a simple text entry form that returns output and
graphs, a more sophisticated Javascript version that provides a multiple window environ-
ment, and a set of point and click modules that are useful for introductory statistics courses
and require no knowledge of the R language. All of the Rweb versions can analyze Web
accessible datasets if a url is provided.

The paper “Rweb: Web-based Statistical Analysis”, providing a detailed explanation of
the different versions of Rweb and an overview of how Rweb works, was published in the
Journal of Statistical Software (http://www.stat.ucla.edu/journals/jss/v04/i01/).

mailto:mjr@stats.mth.uea.ac.uk
http://stats.mth.uea.ac.uk/Rcgi/
mailto:jeff@math.montana.edu
http://www.math.montana.edu/Rweb/
http://www.stat.ucla.edu/journals/jss/v04/i01/

Chapter 5: R Add-On Packages 18

5 R Add-On Packages

5.1 Which add-on packages exist for R?

The R distribution comes with the following extra packages:

ctest A collection of Classical TESTs, including the Ansari-Bradley, Bartlett, chi-
squared, Fisher, Kruskal-Wallis, Kolmogorov-Smirnov, t, and Wilcoxon tests.

eda Exploratory Data Analysis. Currently only contains functions for robust line
fitting, and median polish and smoothing.

lqs Resistant regression and covariance estimation.

methods Formally defined methods and classes for R objects, plus other programming
tools, as described in the Green Book.

modreg MODern REGression: smoothing and local methods.

mva MultiVariate Analysis. Currently contains code for principal components,
canonical correlations, metric multidimensional scaling, factor analysis, and
hierarchical and k-means clustering.

nls Nonlinear regression routines.

splines Regression spline functions and classes.

stepfun Code for dealing with STEP FUNctions, including empirical cumulative distri-
bution functions.

tcltk Interface and language bindings to Tcl/Tk gui elements.

tools Tools for package development and administration.

ts Time Series.

The following packages are available from the cran ‘src/contrib’ area.

AnalyzeFMRI
Functions for I/O, visualisation and analysis of functional Magnetic Resonance
Imaging (fMRI) datasets stored in the ANALYZE format.

Bhat Functions for general likelihood exploration (MLE, MCMC, CIs).

CircStats Circular Statistics, from “Topics in Circular Statistics” by S. Rao Jammala-
madaka and A. SenGupta, 2001, World Scientific.

CoCoAn Constrained Correspondence Analysis.

DBI A common database interface (DBI) class and method definitions. All classes
in this package are virtual and need to be extended by the various DBMS
implementations.

Devore5 Data sets and sample analyses from “Probability and Statistics for Engineering
and the Sciences (5th ed)” by Jay L. Devore, 2000, Duxbury.

EMV Estimation of missing values in a matrix by a k-th nearest neighboors algorithm.

Chapter 5: R Add-On Packages 19

GLMMGibbs
Generalised Linear Mixed Models by Gibbs sampling.

GenKern Functions for generating and manipulating generalised binned kernel density
estimates.

GeneSOM Clustering genes using Self-Organizing Maps (SOMs).

KernSmooth
Functions for kernel smoothing (and density estimation) corresponding to the
book “Kernel Smoothing” by M. P. Wand and M. C. Jones, 1995.

MASS Functions and datasets from the main package of Venables and Ripley, “Modern
Applied Statistics with S-Plus”. Contained in the ‘VR’ bundle.

Matrix A Matrix package.

NISTnls A set of test nonlinear least squares examples from nist, the U.S. National
Institute for Standards and Technology.

Oarray Arrays with arbitrary offsets.

PHYLOGR
Manipulation and analysis of phylogenetically simulated data sets (as obtained
from PDSIMUL in package PDAP) and phylogenetically-based analyses using
GLS.

PTAk A multiway method to decompose a tensor (array) of any order, as a gener-
alisation of SVD also supporting non-identity metrics and penalisations. Also
includes some other multiway methods.

RArcInfo Functions to import Arc/Info V7.x coverages and data.

RMySQL An interface between R and the MySQL database system.

ROracle Oracle Database Interface driver for R. Uses the ProC/C++ embedded SQL.

RPgSQL Provides methods for accessing data stored in PostgreSQL tables.

RQuantLib
Provides access to (some) of the QuantLib functions from within R; currently
limited to some Option pricing and analysis functions. The QuantLib project
aims to provide a comprehensive software framework for quantitative finance.

RSQLite Database Interface R driver for SQLite. Embeds the SQLite database engine
in R.

RadioSonde
A collection of programs for reading and plotting SKEW-T,log p diagrams and
wind profiles for data collected by radiosondes (the typical weather balloon-
borne instrument).

RandomFields
Creating random fields using various methods.

RmSQL An interface between R and the mSQL database system.

Chapter 5: R Add-On Packages 20

Rmpi an interface (wrapper) to MPI (Message-Passing Interface) APIs. It also pro-
vides interactive R slave functionalities to make MPI programming easier in R
than in C(++) or FORTRAN.

Rwave An environment for the time-frequency analysis of 1-D signals (and especially
for the wavelet and Gabor transforms of noisy signals), based on the book
“Practical Time-Frequency Analysis: Gabor and Wavelet Transforms with an
Implementation in S” by Rene Carmona, Wen L. Hwang and Bruno Torresani,
1998, Academic Press.

SASmixed Data sets and sample linear mixed effects analyses corresponding to the exam-
ples in “SAS System for Mixed Models” by R. C. Littell, G. A. Milliken, W.
W. Stroup and R. D. Wolfinger, 1996, SAS Institute.

SuppDists Ten distributions supplementing those built into R (Inverse Gauss, Kruskal-
Wallis, Kendall’s Tau, Friedman’s chi squared, Spearman’s rho, maximum F
ratio, the Pearson product moment correlation coefficiant, Johnson distribu-
tions, normal scores and generalized hypergeometric distributions).

VLMC Functions, classes & methods for estimation, prediction, and simulation (boot-
strap) of VLMC (Variable Length Markov Chain) models.

XML Facilities for reading xml documents and DTDs.

acepack ACE (Alternating Conditional Expectations) and AVAS (Additivity and VAri-
ance Stabilization for regression) methods for selecting regression transforma-
tions.

adapt Adaptive quadrature in up to 20 dimensions.

agce Analysis of growth curve experiments.

akima Linear or cubic spline interpolation for irregularly gridded data.

ash David Scott’s ASH routines for 1D and 2D density estimation.

aws Functions to perform adaptive weights smoothing.

bindata Generation of correlated artificial binary data.

blighty Function for drawing the coastline of the United Kingdom.

boot Functions and datasets for bootstrapping from the book “Bootstrap Methods
and Their Applications” by A. C. Davison and D. V. Hinkley, 1997, Cambridge
University Press.

bootstrap Software (bootstrap, cross-validation, jackknife), data and errata for the book
“An Introduction to the Bootstrap” by B. Efron and R. Tibshirani, 1993, Chap-
man and Hall.

bqtl QTL mapping toolkit for inbred crosses and recombinant inbred lines. Includes
maximum likelihood and Bayesian tools.

brlr Bias-reduced logistic regression: fits logistic regression models by maximum
penalized likelihood.

Chapter 5: R Add-On Packages 21

car Companion to Applied Regression, containing functions for applied regession,
linear models, and generalized linear models, with an emphasis on regression
diagnostics, particularly graphical diagnostic methods.

cclust Convex clustering methods, including k-means algorithm, on-line update al-
gorithm (Hard Competitive Learning) and Neural Gas algorithm (Soft Com-
petitive Learning) and calculation of several indexes for finding the number of
clusters in a data set.

cfa Analysis of configuration frequencies.

chron A package for working with chronological objects (times and dates).

class Functions for classification (k-nearest neighbor and LVQ). Contained in the ‘VR’
bundle.

cluster Functions for cluster analysis.

cmprsk Estimation, testing and regression modeling of subdistribution functions in com-
peting risks.

cobs Constrained B-splines: qualitatively constrained (regression) smoothing via lin-
ear programming.

coda Output analysis and diagnostics for Markov Chain Monte Carlo (MCMC) sim-
ulations.

combinat Combinatorics utilities.

conf.design
A series of simple tools for constructing and manipulating confounded and
fractional factorial designs.

cramer Routine for the multivariate nonparametric Cramer test.

date Functions for dealing with dates. The most useful of them accepts a vector of
input dates in any of the forms ‘8/30/53’, ‘30Aug53’, ‘30 August 1953’, . . . ,
‘August 30 53’, or any mixture of these.

dblcens Calculates the NPMLE of the survival distribution for doubly censored data.

deldir Calculates the Delaunay triangulation and the Dirichlet or Voronoi tesselation
(with respect to the entire plane) of a planar point set.

dichromat Color schemes for dichromats: collapse red-green distinctions to simulate the
effects of colour-blindness.

diamonds Functions for illustrating aperture-4 diamond partitions in the plane, or on the
surface of an octahedron or icosahedron, for use as analysis or sampling grids.

dr Functions, methods, and datasets for fitting dimension reduction regression,
including pHd and inverse regression methods SIR and SAVE.

dse Dynamic System Estimation, a multivariate time series package. Contains dse1
(DSE kernel plus ARMA and state space models), dse2 (DSE extensions),
syskern (functions for writing code that is operating system and R/S inde-
pendent), and tframe (functions for writing code that is independent of the
representation of time).

Chapter 5: R Add-On Packages 22

e1071 Miscellaneous functions used at the Department of Statistics at TU Wien
(E1071), including moments, short-time Fourier transforms, Independent Com-
ponent Analysis, Latent Class Analysis, support vector machines, and fuzzy
clustering, shortest path computation, bagged clustering, and some more.

ellipse Package for drawing ellipses and ellipse-like confidence regions.

emplik Empirical likelihood ratio for means/quantiles/hazards from possibly right cen-
sored data.

evd Functions for extreme value distributions. Extends simulation, distribution,
quantile and density functions to univariate, bivariate and (for simulation) mul-
tivariate parametric extreme value distributions, and provides fitting functions
which calculate maximum likelihood estimates for univariate and bivariate mod-
els.

exactRankTests
Computes exact p-values and quantiles using an implementation of the Streit-
berg/Roehmel shift algorithm.

fastICA Implementation of FastICA algorithm to perform Independent Component
Analysis (ICA) and Projection Pursuit.

fdim Functions for calculating fractal dimension.

fields A collection of programs for curve and function fitting with an emphasis on spa-
tial data. The major methods implemented include cubic and thin plate splines,
universal Kriging and Kriging for large data sets. The main feature is that any
covariance function implemented in R can be used for spatial prediction.

foreign Functions for reading and writing data stored by statistical software like
Minitab, SAS, SPSS, Stata, etc.

fracdiff Maximum likelihood estimation of the parameters of a fractionally differenced
ARIMA(p, d, q) model (Haslett and Raftery, Applied Statistics, 1989).

g.data Create and maintain delayed-data packages (DDP’s).

gafit Genetic algorithm for curve fitting.

gee An implementation of the Liang/Zeger generalized estimating equation ap-
proach to GLMs for dependent data.

geoR Functions to perform geostatistical data analysis including model-based meth-
ods.

geoRglm Functions for inference in generalised linear spatial models.

gld Basic functions for the generalised (Tukey) lambda distribution.

gllm Routines for log-linear models of incomplete contingency tables, including some
latent class models via EM and Fisher scoring approaches.

gregmisc Miscellaneous functions written/maintained by Gregory R. Warnes.

grid The Grid graphics package, a rewrite of the graphics layout capabilities, plus
some support for interaction.

Chapter 5: R Add-On Packages 23

gss A comprehensive package for structural multivariate function estimation using
smoothing splines.

gtkDevice GTK graphics device driver that may be used independently of the R-GNOME
interface and can be used to create R devices as embedded components in a
GUI using a Gtk drawing area widget, e.g., using RGtk.

hdf5 Interface to the ncsa HDF5 library.

ifs Iterated Function Systems distribution function estimator.

ineq Inequality, concentration and poverty measures, and Lorenz curves (empirical
and theoretic).

ipred Improved predictive models by direct and indirect bootstrap aggregation in
classification and regression as well as resampling based estimators of prediction
error.

knnTree Construct or predict with k-nearest-neighbor classifiers, using cross-validation
to select k, choose variables (by forward or backwards selection), and choose
scaling (from among no scaling, scaling each column by its SD, or scaling each
column by its MAD). The finished classifier will consist of a classification tree
with one such k-nn classifier in each leaf.

lasso2 Routines and documentation for solving regression problems while imposing an
L1 constraint on the estimates, based on the algorithm of Osborne et al. (1998)

lattice Lattice graphics, an implementation of Trellis Graphics functions.

leaps A package which performs an exhaustive search for the best subsets of a given set
of potential regressors, using a branch-and-bound algorithm, and also performs
searches using a number of less time-consuming techniques.

lgtdl A set of methods for longitudinal data objects.

lmtest A collection of tests on the assumptions of linear regression models from
the book “The linear regression model under test” by W. Kraemer and H.
Sonnberger, 1986, Physica.

locfit Local Regression, likelihood and density estimation.

logspline Logspline density estimation.

lokern Kernel regression smoothing with adaptive local or global plug-in bandwidth
selection.

lpridge Local polynomial (ridge) regression.

maptree Functions with example data for graphing and mapping models from hierarchi-
cal clustering and classification and regression trees.

maxstat Maximally selected rank and Gauss statistics with several p-value approxima-
tions.

mclust Model-based cluster analysis.

Chapter 5: R Add-On Packages 24

mda Code for mixture discriminant analysis (MDA), flexible discriminant analysis
(FDA), penalized discriminant analysis (PDA), multivariate additive regression
splines (MARS), adaptive back-fitting splines (BRUTO), and penalized regres-
sion.

meanscore Mean Score method for missing covariate data in logistic regression models.

mgcv Routines for GAMs and other genralized ridge regression problems with multi-
ple smoothing parameter selection by GCV or UBRE.

mlbench A collection of artificial and real-world machine learning benchmark problems,
including the Boston housing data.

moc Fits a variety of mixtures models for multivariate observations with user-difined
distributions and curves.

muhaz Hazard function estimation in survival analysis.

multiv Functions for hierarchical clustering, partitioning, bond energy algorithm, Sam-
mon mapping, PCA and correspondence analysis.

mvnmle ML estimation for multivariate normal data with missing values.

mvtnorm Multivariate normal and t distributions.

netCDF Read data from netCDF files.

nlme Fit and compare Gaussian linear and nonlinear mixed-effects models.

nlrq Nonlinear quantile regression.

nnet Software for single hidden layer perceptrons (“feed-forward neural networks”),
and for multinomial log-linear models. Contained in the ‘VR’ bundle.

norm Analysis of multivariate normal datasets with missing values.

npmc Nonparametric Multiple Comparisons: provides simultaneous rank test proce-
dures for the one-way layout without presuming a certain distribution.

odesolve An interface for the Ordinary Differential Equation (ODE) solver lsoda. ODEs
are expressed as R functions.

oz Functions for plotting Australia’s coastline and state boundaries.

panel Functions and datasets for fitting models to Panel data.

pastecs Package for Analysis of Space-Time Ecological Series.

pcurve Fits a principal curve to a numeric multivariate dataset in arbitrary dimensions.
Produces diagnostic plots. Also calculates Bray-Curtis and other distance ma-
trices and performs multi-dimensional scaling and principal component analy-
ses.

pear Periodic Autoregression Analysis.

permax Functions intended to facilitate certain basic analyses of DNA array data, espe-
cially with regard to comparing expression levels between two types of tissue.

pinktoe Converts S trees to html/Perl files for interactive tree traversal.

Chapter 5: R Add-On Packages 25

pixmap Functions for import, export, plotting and other manipulations of bitmapped
images.

polynom A collection of functions to implement a class for univariate polynomial manip-
ulations.

princurve Fits a principal curve to a matrix of points in arbitrary dimension.

pspline Smoothing splines with penalties on order m derivatives.

qtl Analysis of experimental crosses to identify QTLs.

quadprog For solving quadratic programming problems.

quantreg Quantile regression and related methods.

qvcalc Functions to compute quasi-variances and associated measures of approxima-
tion error.

randomForest
Breiman’s random forest classifier.

relimp Functions to facilitate inference on the relative importance of predictors in a
linear or generalized linear model.

rmeta Functions for simple fixed and random effects meta-analysis for two-sample
comparison of binary outcomes.

rpart Recursive PARTitioning and regression trees.

rpvm R interface to PVM (Parallel Virtual Machine). Provides interface to PVM
APIs, and examples and documentation for its use.

rsprng Provides interface to SPRNG (Scalable Parallel Random Number Generators)
APIs, and examples and documentation for its use.

scatterplot3d
Plots a three dimensional (3D) point cloud perspectively.

sem Functions for fitting general linear Structural Equation Models (with observed
and unobserved variables) by the method of maximum likelihood using the
RAM approach.

serialize Simple interfce for serializing to connections.

sgeostat An object-oriented framework for geostatistical modeling.

sm Software linked to the book “Applied Smoothing Techniques for Data Analysis:
The Kernel Approach with S-Plus Illustrations” by A. W. Bowman and A.
Azzalini (1997), Oxford University Press.

sma Functions for exploratory (statistical) microarray analysis.

sn Functions for manipulating skew-normal probability distributions and for fitting
them to data, in the scalar and the multivariate case.

sna A range of tools for social network analysis, including node and graph-level
indices, structural distance and covariance methods, structural equivalence de-
tection, p* modeling, and network visualization.

Chapter 5: R Add-On Packages 26

spatial Functions for kriging and point pattern analysis from “Modern Applied Statis-
tics with S-Plus” by W. Venables and B. Ripley. Contained in the ‘VR’ bundle.

spatstat Data analysis and modelling of two-dimensional point patterns, including mul-
titype points and spatial covariates.

spdep A collection of functions to create spatial weights matrix objects from polygon
contiguities, from point patterns by distance and tesselations, for summarising
these objects, and for permitting their use in spatial data analysis; a collection
of tests for spatial autocorrelation, including global Moran’s I and Geary’s C,
local Moran’s I, saddlepoint approximations for global and local Moran’s I;
and functions for estimating spatial simultaneous autoregressive (SAR) models.
(Was formerly the three packages: spweights, sptests, and spsarlm.)

splancs Spatial and space-time point pattern analysis functions.

strucchange
Various tests on structural change in linear regression models.

subselect A collection of functions which assess the quality of variable subsets as surro-
gates for a full data set, and search for subsets which are optimal under various
criteria.

survival Functions for survival analysis, including penalised likelihood.

systemfit Contains functions for fitting simultaneous systems of equations using Ordinary
Least Sqaures (OLS), Two-Stage Least Squares (2SLS), and Three-Stage Least
Squares (3SLS).

tensor Tensor product of arrays.

tkrplot Simple mechanism for placing R graphics in a Tk widget.

tree Classification and regression trees.

tripack A constrained two-dimensional Delaunay triangulation package.

tseries Package for time series analysis with emphasis on non-linear modelling.

twostage Functions for optimal design of two-stage-studies using the Mean Score method.

vegan Various help functions for vegetation scientists and community ecologists.

waveslim Basic wavelet routines for time series analysis.

wavethresh
Software to perform 1-d and 2-d wavelet statistics and transforms.

wle Robust statistical inference via a weighted likelihood approach.

xgobi Interface to the XGobi and XGvis programs for graphical data analysis.

xtable Export data to LaTEX and html tables.

See cran ‘src/contrib/PACKAGES’ for more information.
There is also a cran ‘src/contrib/Devel’ directory which contains packages still “under

development” or depending on features only present in the current development versions of
R. Volunteers are invited to give these a try, of course. This area of cran currently contains

Chapter 5: R Add-On Packages 27

GRASS Interface between the GRASS geographical information system and R, based
on starting R from within the GRASS environment and chosen LOCATION
and MAPSET. Wrapper and helper functions are provided for a range of R
functions to match the interface metadata structures.

R2HTML Functions for exporting R objects & graphics in an html document.

RODBC An odbc database interface.

StatDataML
Read and write StatDataML.

cxx A small C++ test package.

dopt Finding D-optimal experimental designs.

dseplus Extensions to dse, the Dynamic Systems Estimation multivariate time series
package. Contains PADI, juice and monitoring extensions.

ensemble Ensembles of tree classifiers.

event.chart
Package for creating event charts.

hpower A suite of functions to compute power and sample size for tests of the general
linear hypothesis.

multidim Code for correspondence analysis and other multidimensional descriptive statis-
tics.

multilm A basic method for fitting and testing multivariate linear models, including
stabilized test procedures by Laeuter et. al.

npConfRatio
Nonparametric confidence intervals for the ratios of medians.

pls Univariate Partial Least Squares Regression.

regexp Simple regular expression interface.

write.snns Function for writing a snns pattern file from a data frame or matrix.

Directory ‘src/contrib/Omegahat’ contains yet unreleased packages from the Omegahat
Project for Statistical Computing. Currently, there are

CORBA Dynamic CORBA client/server facilities for R. Connects to other CORBA-
aware applications developed in arbitrary languages, on different machines and
allows R functionality to be exported in the same way to other applications.

OOP OOP style classes and methods for R and S-Plus. Object references and class-
based method definition are supported in the style of languages such as Java
and C++.

REmbeddedPostgres
Allows R functions and objects to be used to implement SQL functions —
per-record, aggregate and trigger functions.

http://www.omegahat.org/
http://www.omegahat.org/

Chapter 5: R Add-On Packages 28

RGnumeric
A plugin for the Gnumeric spreadsheet that allows R functions to be called
from cells within the sheet, automatic recalculation, etc.

RGtkViewers
A collection of tools for viewing different S objects, databases, class and widget
hierarchies, S source file contents, etc.

RJavaDevice
A graphics device for R that uses Java components and graphics apis.

RSMethods
An implementation of S version 4 methods and classes for R, consistent with
the basic material in “Programming with data” by John M. Chambers, 1998,
Springer NY.

RSPerl An interface from R to an embedded, persistent Perl interpreter, allowing one
to call arbitrary Perl subroutines, classes and methods.

RSPython Allows Python programs to invoke S functions, methods, etc., and S code to
call Python functionality.

SASXML Example for reading XML files in SAS 8.2 manner.

SJava An interface from R to Java to create and call Java objects and methods.

SLanguage
Functions and C support utilities to support S language programming that can
work in both R and S-Plus.

SNetscape Plugin for Netscape and JavaScript.

SXalan Process XML documents using XSL functions implemented in R and dynami-
cally substituting output from R.

Slcc Parses C source code, allowing one to analyze and automatically generate in-
terfaces from S to that code, including the table of S-accessible native symbols,
parameter count and type information, S constructors from C objects, call
graphs, etc.

Sxslt An extension module for libxslt, the XML-XSL document translator, that allows
XSL functions to be implemented via R functions.

The Bioconductor Project produces an open source software framework that will as-
sist biologists and statisticians working in bioinformatics, with primary emphasis on infer-
ence using DNA microarrays. Currently, the following R packages can be obtained from
http://www.bioconductor.org/packages/devel/html/, with more packages in develop-
ment.

AnnBuilder
Processing information from Unigene, LocusLink, and Gene Ontology Con-
sortium, storing the data to tables in a local database, and generating XML
annotation files.

Biobase Base functions for Bioconductor.

http://www.bioconductor.org

Chapter 5: R Add-On Packages 29

ROC Utilities for ROC, with uarray focus.

affy Methods for Affymetrix Oligonucleotide Arrays.

annotate Annotation for microarrays.

edd Expression density diagnostics.

genefilter Basic functions for filtering genes.

geneplotter
Basic functions for plotting genetic data.

marrayClasses
Class definitions for pre-normalized and normalized cDNA microarray data.
Basic methods for accessing/replacing, printing, and subsetting.

marrayInput
Functions for reading microarray data into R from different image analysis
output files, and probe and target description files. Widgets are supplied to
facilitate and automate data input and the creation of microarray specific R
objects for storing these data.

marrayNorm
Functions for location and scale normalization procedures based on robust local
regression.

marrayPlots
Functions for diagnostic plots for pre- and post-normalization cDNA microarray
intensity data: boxplots, scatter-plots, color images.

multtest Multiple testing procedures. Includes resampling-based multiple testing proce-
dures for controlling the family-wise error rate (FWER): Bonferroni, Hochberg
(1988), Holm (1979), Sidak, Westfall & Young (1993) (referred to as minP
and maxT). Also includes procedures for controlling the false discovery rate
(FDR): Benjamini & Hochberg (1995), Benjamini & Yekutieli (2001) step-up
procedures. These procedures are implemented for tests based on t-statistics, F-
statistics, paired t-statistics, block F-statistics, Wilcoxon statistics. Results are
reported in terms of adjusted p-values. The procedures are directly applicable
to identify differentially expressed genes in DNA microarray experiments.

rhdf5 An HDF5 interface for R.

tkWidgets R based Tk widgets to provide user interfaces.

These packages will soon be made available via cran as well.
Jim Lindsey has written a collection of R packages for nonlinear regression and repeated

measurements, consisting of event (event history procedures and models), gnlm (general-
ized nonlinear regression models), growth (multivariate normal and elliptically-contoured
repeated measurements models), repeated (non-normal repeated measurements models),
rmutil (utilities for nonlinear regression and repeated measurements), and stable (proba-
bility functions and generalized regression models for stable distributions). All analyses
in the new edition of his book “Models for Repeated Measurements” (1999, Oxford Uni-
versity Press) were carried out using these packages. Jim has also started dna, a package

mailto:jlindsey@luc.ac.be

Chapter 5: R Add-On Packages 30

with procedures for the analysis of DNA sequences. Jim’s packages can be obtained from
http://www.luc.ac.be/~jlindsey/rcode.html.

Frank Harrell has made R ports of his Design and Hmisc packages available via
http://hesweb1.med.virginia.edu/biostat/s/library/r/.

More code has been posted to the r-help mailing list, and can be obtained from the
mailing list archive.

5.2 How can add-on packages be installed?

(Unix only.) The add-on packages on cran come as gzipped tar files named pkg_
version.tar.gz, which may in fact be “bundles” containing more than one package. Pro-
vided that tar and gzip are available on your system, type

$ R CMD INSTALL /path/to/pkg_version.tar.gz

at the shell prompt to install to the library tree rooted at the first directory given in
R_LIBS (see below) if this is set and non-null, and to the default library (the ‘library’
subdirectory of ‘R_HOME’) otherwise. (Versions of R prior to 1.3.0 installed to the default
library by default.)

To install to another tree (e.g., your private one), use
$ R CMD INSTALL -l lib /path/to/pkg_version.tar.gz

where lib gives the path to the library tree to install to.
Even more conveniently, you can install and automatically update packages from within

R if you have access to cran. See the help page for CRAN.packages() for more information.
You can use several library trees of add-on packages. The easiest way to tell R to use

these is via the environment variable R_LIBS which should be a colon-separated list of
directories at which R library trees are rooted. You do not have to specify the default
tree in R_LIBS. E.g., to use a private tree in ‘$HOME/lib/R’ and a public site-wide tree in
‘/usr/local/lib/R-contrib’, put

R_LIBS="$HOME/lib/R:/usr/local/lib/R-contrib"; export R_LIBS

into your (Bourne) shell profile or even preferably, add the line
R_LIBS="$HOME/lib/R:/usr/local/lib/R-contrib"

your ‘~/.Renviron’ file. (Note that no export statement is needed or allowed in this file;
see the on-line help for Startup for more information.)

5.3 How can add-on packages be used?

To find out which additional packages are available on your system, type
library()

at the R prompt.
This produces something like

Packages in ‘/home/me/lib/R’:

mystuff My own R functions, nicely packaged but not documented

http://www.luc.ac.be/~jlindsey/rcode.html
mailto:fharrell@virginia.edu
http://hesweb1.med.virginia.edu/biostat/s/library/r/

Chapter 5: R Add-On Packages 31

Packages in ‘/usr/local/lib/R/library’:

KernSmooth Functions for kernel smoothing for Wand & Jones (1995)
MASS Main Library of Venables and Ripley’s MASS
base The R base package
boot Bootstrap R (S-Plus) Functions (Canty)
class Functions for classification
cluster Functions for clustering (by Rousseeuw et al.)
ctest Classical Tests
eda Exploratory Data Analysis
foreign Read data stored by Minitab, S, SAS, SPSS, Stata, ...
grid The Grid Graphics Package
lattice Lattice Graphics
lqs Resistant Regression and Covariance Estimation
mgcv Multiple smoothing parameter estimation and GAMs by GCV
modreg Modern Regression: Smoothing and Local Methods
mva Classical Multivariate Analysis
nlme Linear and nonlinear mixed effects models
nls Nonlinear regression
nnet Feed-forward neural networks and multinomial log-linear

models
rpart Recursive partitioning
spatial functions for kriging and point pattern analysis
splines Regression Spline Functions and Classes
stepfun Step Functions, including Empirical Distributions
survival Survival analysis, including penalised likelihood
tcltk Interface to Tcl/Tk
tools Tools for Package Development and Administration
ts Time series functions

You can “load” the installed package pkg by
library(pkg)

You can then find out which functions it provides by typing one of
library(help = pkg)
help(package = pkg)

You can unload the loaded package pkg by
detach("package:pkg")

5.4 How can add-on packages be removed?

Use
$ R CMD REMOVE pkg 1 ... pkg n

to remove the packages pkg 1, . . . , pkg n from the library tree rooted at the first directory
given in R_LIBS if this is set and non-null, and from the default library otherwise. (Versions
of R prior to 1.3.0 removed from the default library by default.)

To remove from library lib, do
$ R CMD REMOVE -l lib pkg 1 ... pkg n

Chapter 5: R Add-On Packages 32

5.5 How can I create an R package?

A package consists of a subdirectory containing the files ‘DESCRIPTION’ and ‘INDEX’,
and the subdirectories ‘R’, ‘data’, ‘demo’, ‘exec’, ‘inst’, ‘man’, ‘src’, and ‘tests’ (some of
which can be missing). Optionally the package can also contain script files ‘configure’ and
‘cleanup’ which are executed before and after installation.

See section “Creating R packages” in Writing R Extensions, for details. This manual is
included in the R distribution, see Section 2.7 [What documentation exists for R?], page 5,
and gives information on package structure, the configure and cleanup mechanisms, and on
automated package checking and building.

R version 1.3.0 has added the function package.skeleton() which will set up directories,
save data and code, and create skeleton help files for a set of R functions and datasets.

See Section 2.10 [What is CRAN?], page 8, for information on uploading a package to
CRAN.

5.6 How can I contribute to R?

R is in active development and there is always a risk of bugs creeping in. Also, the
developers do not have access to all possible machines capable of running R. So, simply
using it and communicating problems is certainly of great value.

One place where functionality is still missing is the modeling software as described in
“Statistical Models in S” (see Section 3.1 [What is S?], page 10); Generalized Additive
Models (see Section 7.17 [Are GAMs implemented in R?], page 40) and some of the nonlinear
modeling code are not there yet.

The R Developer Page acts as an intermediate repository for more or less finalized ideas
and plans for the R statistical system. It contains (pointers to) TODO lists, RFCs, various
other writeups, ideas lists, and CVS miscellanea.

Many (more) of the packages available at the Statlib S Repository might be worth porting
to R.

If you are interested in working on any of these projects, please notify Kurt Hornik.

http://developer.r-project.org/
mailto:Kurt.Hornik@r-project.org

Chapter 6: R and Emacs 33

6 R and Emacs

6.1 Is there Emacs support for R?

There is an Emacs package called ess (“Emacs Speaks Statistics”) which provides a
standard interface between statistical programs and statistical processes. It is intended
to provide assistance for interactive statistical programming and data analysis. Languages
supported include: S dialects (S 3/4, S-Plus 3.x/4.x/5.x, and R), LispStat dialects (XLisp-
Stat, ViSta) and SAS. Stata and SPSS dialect (SPSS, PSPP) support is being examined
for possible future implementation

ess grew out of the need for bug fixes and extensions to S-mode 4.8 (which was a gnu
Emacs interface to S/S-Plus version 3 only). The current set of developers desired support
for XEmacs, R, S4, and MS Windows. In addition, with new modes being developed for R,
Stata, and SAS, it was felt that a unifying interface and framework for the user interface
would benefit both the user and the developer, by helping both groups conform to standard
Emacs usage. The end result is an increase in efficiency for statistical programming and
data analysis, over the usual tools.

R support contains code for editing R source code (syntactic indentation and highlighting
of source code, partial evaluations of code, loading and error-checking of code, and source
code revision maintenance) and documentation (syntactic indentation and highlighting of
source code, sending examples to running ess process, and previewing), interacting with an
inferior R process from within Emacs (command-line editing, searchable command history,
command-line completion of R object and file names, quick access to object and search
lists, transcript recording, and an interface to the help system), and transcript manipulation
(recording and saving transcript files, manipulating and editing saved transcripts, and re-
evaluating commands from transcript files).

The latest stable version of ess are available via cran or the ESS web page. The html
version of the documentation can be found at http://stat.ethz.ch/ESS/.

ess comes with detailed installation instructions.
For help with ess, send email to ESS-help@stat.ethz.ch.
Please send bug reports and suggestions on ess to ESS-bugs@stat.math.ethz.ch. The

easiest way to do this from is within Emacs by typing M-x ess-submit-bug-report or
using the [ESS] or [iESS] pulldown menus.

6.2 Should I run R from within Emacs?

Yes, definitely. Inferior R mode provides a readline/history mechanism, object name
completion, and syntax-based highlighting of the interaction buffer using Font Lock mode,
as well as a very convenient interface to the R help system.

Of course, it also integrates nicely with the mechanisms for editing R source using Emacs.
One can write code in one Emacs buffer and send whole or parts of it for execution to R;
this is helpful for both data analysis and programming. One can also seamlessly integrate
with a revision control system, in order to maintain a log of changes in your programs and
data, as well as to allow for the retrieval of past versions of the code.

http://software.biostat.washington.edu/statsoft/ess/
http://stat.ethz.ch/ESS/
mailto:ESS-help@stat.ethz.ch
mailto:ESS-bugs@stat.math.ethz.ch

Chapter 6: R and Emacs 34

In addition, it allows you to keep a record of your session, which can also be used for
error recovery through the use of the transcript mode.

To specify command line arguments for the inferior R process, use C-u M-x R for starting
R.

6.3 Debugging R from within Emacs

To debug R “from within Emacs”, there are several possibilities. To use the Emacs
GUD (Grand Unified Debugger) library with the recommended debugger GDB, type M-x

gdb and give the path to the R binary as argument. At the gdb prompt, set R_HOME and
other environment variables as needed (using e.g. set env R_HOME /path/to/R/, but see
also below), and start the binary with the desired arguments (e.g., run --vsize=12M).

If you have ess, you can do C-u M-x R 〈RET〉 - d 〈SPC〉 g d b 〈RET〉 to start an inferior R
process with arguments ‘-d gdb’.

A third option is to start an inferior R process via ess (M-x R) and then start GUD
(M-x gdb) giving the R binary (using its full path name) as the program to debug. Use the
program ps to find the process number of the currently running R process then use the
attach command in gdb to attach it to that process. One advantage of this method is that
you have separate *R* and *gud-gdb* windows. Within the *R* window you have all the
ess facilities, such as object-name completion, that we know and love.

When using GUD mode for debugging from within Emacs, you may find it most conve-
nient to use the directory with your code in it as the current working directory and then
make a symbolic link from that directory to the R binary. That way ‘.gdbinit’ can stay
in the directory with the code and be used to set up the environment and the search paths
for the source, e.g. as follows:

set env R_HOME /opt/R
set env R_PAPERSIZE letter
set env R_PRINTCMD lpr
dir /opt/R/src/appl
dir /opt/R/src/main
dir /opt/R/src/nmath
dir /opt/R/src/unix

Chapter 7: R Miscellanea 35

7 R Miscellanea

7.1 Why does R run out of memory?

Versions of R prior to 1.2.0 used a static memory model. At startup, R asked the
operating system to reserve a fixed amount of memory for it. The size of this chunk
could not be changed subsequently. Hence, it could happen that not enough memory was
allocated, e.g., when trying to read large data sets into R. In such cases, it was necessary to
restart R with more memory available, as controlled by the command line options ‘--nsize’
and ‘--vsize’.

R version 1.2.0 introduces a new “generational” garbage collector, which will increase
the memory available to R as needed. Hence, user intervention is no longer necessary for
ensuring that enough memory is available.

The new garbage collector does not move objects in memory, meaning that it is possible
for the free memory to become fragmented so that large objects cannot be allocated even
when there is apparently enough memory for them.

7.2 Why does sourcing a correct file fail?

Versions of R prior to 1.2.1 may have had problems parsing files not ending in a newline.
Earlier R versions had a similar problem when reading in data files. This should no longer
happen.

7.3 How can I set components of a list to NULL?

You can use
x[i] <- list(NULL)

to set component i of the list x to NULL, similarly for named components. Do not set x[i]
or x[[i]] to NULL, because this will remove the corresponding component from the list.

For dropping the row names of a matrix x, it may be easier to use rownames(x) <- NULL,
similarly for column names.

7.4 How can I save my workspace?

save.image() saves the objects in the user’s .GlobalEnv to the file ‘.RData’ in the R
startup directory. (This is also what happens after q("yes").) Using save.image(file) one
can save the image under a different name.

7.5 How can I clean up my workspace?

To remove all objects in the currently active environment (typically .GlobalEnv), you
can do

rm(list = ls(all = TRUE))

(Without ‘all = TRUE’, only the objects with names not starting with a ‘.’ are removed.)

Chapter 7: R Miscellanea 36

7.6 How can I get eval() and D() to work?

Strange things will happen if you use eval(print(x), envir = e) or D(x^2, "x"). The
first one will either tell you that "x" is not found, or print the value of the wrong x. The
other one will likely return zero if x exists, and an error otherwise.

This is because in both cases, the first argument is evaluated in the calling environment
first. The result (which should be an object of mode "expression" or "call") is then
evaluated or differentiated. What you (most likely) really want is obtained by “quoting”
the first argument upon surrounding it with expression(). For example,

R> D(expression(x^2), "x")
2 * x

Although this behavior may initially seem to be rather strange, is perfectly logical. The
“intuitive” behavior could easily be implemented, but problems would arise whenever the
expression is contained in a variable, passed as a parameter, or is the result of a function
call. Consider for instance the semantics in cases like

D2 <- function(e, n) D(D(e, n), n)

or

g <- function(y) eval(substitute(y), sys.frame(sys.parent(n = 2)))
g(a * b)

See the help page for deriv() for more examples.

7.7 Why do my matrices lose dimensions?

When a matrix with a single row or column is created by a subscripting operation, e.g.,
row <- mat[2,], it is by default turned into a vector. In a similar way if an array with
dimension, say, 2 x 3 x 1 x 4 is created by subscripting it will be coerced into a 2 x 3 x 4
array, losing the unnecessary dimension. After much discussion this has been determined
to be a feature.

To prevent this happening, add the option ‘drop = FALSE’ to the subscripting. For
example,

rowmatrix <- mat[2, , drop = FALSE] # creates a row matrix
colmatrix <- mat[, 2, drop = FALSE] # creates a column matrix
a <- b[1, 1, 1, drop = FALSE] # creates a 1 x 1 x 1 array

The ‘drop = FALSE’ option should be used defensively when programming. For example,
the statement

somerows <- mat[index,]

will return a vector rather than a matrix if index happens to have length 1, causing errors
later in the code. It should probably be rewritten as

somerows <- mat[index, , drop = FALSE]

Chapter 7: R Miscellanea 37

7.8 How does autoloading work?

R has a special environment called .AutoloadEnv. Using autoload(name, pkg), where
name and pkg are strings giving the names of an object and the package containing it,
stores some information in this environment. When R tries to evaluate name, it loads the
corresponding package pkg and reevaluates name in the new package’s environment.

Using this mechanism makes R behave as if the package was loaded, but does not occupy
memory (yet).

See the help page for autoload() for a very nice example.

7.9 How should I set options?

The function options() allows setting and examining a variety of global “options” which
affect the way in which R computes and displays its results. The variable .Options holds
the current values of these options, but should never directly be assigned to unless you want
to drive yourself crazy—simply pretend that it is a “read-only” variable.

For example, given

test1 <- function(x = pi, dig = 3) {
oo <- options(digits = dig); on.exit(options(oo));
cat(.Options$digits, x, "\n")

}
test2 <- function(x = pi, dig = 3) {

.Options$digits <- dig
cat(.Options$digits, x, "\n")

}

we obtain:

R> test1()
3 3.14
R> test2()
3 3.141593

What is really used is the global value of .Options, and using options(OPT = VAL)

correctly updates it. Local copies of .Options, either in .GlobalEnv or in a function
environment (frame), are just silently disregarded.

7.10 How do file names work in Windows?

As R uses C-style string handling, ‘\’ is treated as an escape character, so that for
example one can enter a newline as ‘\n’. When you really need a ‘\’, you have to escape it
with another ‘\’.

Thus, in filenames use something like "c:\\data\\money.dat". You can also replace
‘\’ by ‘/’ ("c:/data/money.dat").

Chapter 7: R Miscellanea 38

7.11 Why does plotting give a color allocation error?

Sometimes plotting, e.g., when running demo(image), results in “Error: color allocation
error”. This is an X problem, and only indirectly related to R. It occurs when applications
started prior to R have used all the available colors. (How many colors are available depends
on the X configuration; sometimes only 256 colors can be used.)

One application which is notorious for “eating” colors is Netscape. If the problem occurs
when Netscape is running, try (re)starting it with either the ‘-no-install’ (to use the
default colormap) or the ‘-install’ (to install a private colormap) option.

You could also set the colortype of X11() to "pseudo.cube" rather than the default
"pseudo". See the help page for X11() for more information.

7.12 How do I convert factors to numeric?

It may happen that when reading numeric data into R (usually, when reading in a file),
they come in as factors. If f is such a factor object, you can use

as.numeric(as.character(f))

to get the numbers back. More efficient, but harder to remember, is
as.numeric(levels(f))[as.integer(f)]

In any case, do not call as.numeric() or their likes directly.

7.13 Are Trellis displays implemented in R?

The recommended package lattice (which is based on another recommended package,
grid) provides graphical functionality that is compatible with most Trellis commands.

You could also look at coplot() and dotchart() which might do at least some of what
you want. Note also that the R version of pairs() is fairly general and provides most of the
functionality of splom(), and that R’s default plot method has an argument asp allowing
to specify (and fix against device resizing) the aspect ratio of the plot.

(Because the word “Trellis” has been claimed as a trademark we do not use it in R. The
name “lattice” has been chosen for the R equivalent.)

7.14 What are the enclosing and parent environments?

Inside a function you may want to access variables in two additional environments: the
one that the function was defined in (“enclosing”), and the one it was invoked in (“parent”).

If you create a function at the command line or load it in a package its enclosing envi-
ronment is the global workspace. If you define a function f() inside another function g()
its enclosing environment is the environment inside g(). The enclosing environment for a
function is fixed when the function is created. You can find out the enclosing environment
for a function f() using environment(f).

The “parent” environment, on the other hand, is defined when you invoke a function.
If you invoke lm() at the command line its parent environment is the global workspace, if
you invoke it inside a function f() then its parent environment is the environment inside

Chapter 7: R Miscellanea 39

f(). You can find out the parent environment for an invocation of a function by using
parent.frame() or sys.frame(sys.parent()).

So for most user-visible functions the enclosing environment will be the global workspace,
since that is where most functions are defined. The parent environment will be wherever
the function happens to be called from. If a function f() is defined inside another function
g() it will probably be used inside g() as well, so its parent environment and enclosing
environment will probably be the same.

Parent environments are important because things like model formulas need to be eval-
uated in the environment the function was called from, since that’s where all the variables
will be available. This relies on the parent environment being potentially different with
each invocation.

Enclosing environments are important because a function can use variables in the en-
closing environment to share information with other functions or with other invocations of
itself (see the section on lexical scoping). This relies on the enclosing environment being
the same each time the function is invoked.

Scoping is hard. Looking at examples helps. It is particularly instructive to look at
examples that work differently in R and S and try to see why they differ. One way to describe
the scoping differences between R and S is to say that in S the enclosing environment is
always the global workspace, but in R the enclosing environment is wherever the function
was created.

7.15 How can I substitute into a plot label?

Often, it is desired to use the value of an R object in a plot label, e.g., a title. This is
easily accomplished using paste() if the label is a simple character string, but not always
obvious in case the label is an expression (for refined mathematical annotation). In such
a case, either use parse() on your pasted character string or use substitute() on an
expression. For example, if ahat is an estimator of your parameter a of interest, use

title(substitute(hat(a) == ahat, list(ahat = ahat)))

(note that it is ‘==’ and not ‘=’). There are more worked examples in the mailing list achives.

7.16 What are valid names?

When creating data frames using data.frame() or read.table(), R by default ensures
that the variable names are syntactically valid. (The argument ‘check.names’ to these
functions controls whether variable names are checked and adjusted by make.names() if
needed.)

To understand what names are “valid”, one needs to take into account that the term
“name” is used in several different (but related) ways in the language:
1. A syntactic name is a string the parser interprets as this type of expression. It consists

of letters, numbers, and the dot character and starts with a letter or the dot.
2. An object name is a string associated with an object that is assigned in an expression

either by having the object name on the left of an assignment operation or as an
argument to the assign() function. It is usually a syntactic name as well, but can be
any non-empty string if it is quoted (and it is always quoted in the call to assign()).

Chapter 7: R Miscellanea 40

3. An argument name is what appears to the left of the equals sign when supplying an
argument in a function call (for example, f(trim=.5)). Argument names are also
usually syntactic names, but again can be anything if they are quoted.

4. An element name is a string that identifies a piece of an object (a component of a list,
for example.) When it is used on the right of the ‘$’ operator, it must be a syntactic
name, or quoted. Otherwise, element names can be any strings. (When an object is
used as a database, as in a call to eval() or attach(), the element names become
object names.)

5. Finally, a file name is a string identifying a file in the operating system for reading,
writing, etc. It really has nothing much to do with names in the language, but it is
traditional to call these strings file “names”.

7.17 Are GAMs implemented in R?

There is a gam() function for Generalized Additive Models in package mgcv, but it is
not an exact clone of what is described in the White Book (no lo() for example). Package
gss can fit spline-based GAMs too. And if you can accept regression splines you can use
glm(). For gaussian GAMs you can use bruto() from package mda.

7.18 Why is the output not printed when I source() a file?

Most R commands do not generate any output. The command
1+1

computes the value 2 and returns it; the command
summary(glm(y~x+z, family=binomial))

fits a logistic regression model, computes some summary information and returns an object
of class "summary.glm" (see Section 8.1 [How should I write summary methods?], page 42).

If you type ‘1+1’ or ‘summary(glm(y~x+z, family=binomial))’ at the command line
the returned value is automatically printed (unless it is invisible()), but in other cir-
cumstances, such as in a source()d file or inside a function it isn’t printed unless you
specifically print it.

To print the value use
print(1+1)

or
print(summary(glm(y~x+z, family=binomial)))

instead, or use source(file, echo=TRUE).

7.19 Why does outer() behave strangely with my function?

As the help for outer() indicates, it does not work on arbitrary functions the way the
apply() family does. It requires functions that are vectorized to work elementwise on
arrays. As you can see by looking at the code, outer(x, y, FUN) creates two large vectors
containing every possible combination of elements of x and y and then passes this to FUN
all at once. Your function probably cannot handle two large vectors as parameters.

Chapter 7: R Miscellanea 41

If you have a function that cannot handle two vectors but can handle two scalars, then
you can still use outer() but you will need to wrap your function up first, to simulate
vectorized behavior. Suppose your function is

foo <- function(x, y, happy) {
stopifnot(length(x) == 1, length(y) == 1) # scalars only!
(x + y) * happy

}

If you define the general function
wrapper <- function(x, y, my.fun, ...) {
sapply(seq(along=x), FUN = function(i) my.fun(x[i], y[i], ...))

}

then you can use outer() by writing, e.g.,
outer(1:4, 1:2, FUN = wrapper, my.fun = foo, happy = 10)

7.20 Why does the output from anova() depend on the
order of factors in the model?

In a model such as ~A+B+A:B, R will report the difference in sums of squares between the
models ~1, ~A, ~A+B and ~A+B+A:B. If the model were ~B+A+A:B, R would report differences
between ~1, ~B, ~A+B, and ~A+B+A:B . In the first case the sum of squares for A is comparing
~1 and ~A, in the second case it is comparing ~B and ~B+A. In a non-orthogonal design (i.e.,
most unbalanced designs) these comparisons are (conceptually and numerically) different.

Some packages report instead the sums of squares based on comparing the full model to
the models with each factor removed one at a time (the famous ‘Type III sums of squares’
from SAS, for example). These do not depend on the order of factors in the model. The
question of which set of sums of squares is the Right Thing provokes low-level holy wars on
r-help from time to time.

There is no need to be agitated about the particular sums of squares that R reports. You
can compute your favorite sums of squares quite easily. Any two models can be compared
with anova(model1, model2), and drop1(model1) will show the sums of squares resulting
from dropping single terms.

Chapter 8: R Programming 42

8 R Programming

8.1 How should I write summary methods?

Suppose you want to provide a summary method for class "foo". Then summary.foo()
should not print anything, but return an object of class "summary.foo", and you should
write a method print.summary.foo() which nicely prints the summary information and
invisibly returns its object. This approach is preferred over having summary.foo() print
summary information and return something useful, as sometimes you need to grab some-
thing computed by summary() inside a function or similar. In such cases you don’t want
anything printed.

8.2 How can I debug dynamically loaded code?

Roughly speaking, you need to start R inside the debugger, load the code, send an
interrupt, and then set the required breakpoints.

See section “Finding entry points in dynamically loaded code” in Writing R Extensions.
This manual is included in the R distribution, see Section 2.7 [What documentation exists
for R?], page 5.

8.3 How can I inspect R objects when debugging?

The most convenient way is to call R_PV from the symbolic debugger.
See section “Inspecting R objects when debugging” in Writing R Extensions.

8.4 How can I change compilation flags?

Suppose you have C code file for dynloading into R, but you want to use R CMD SHLIB
with compilation flags other than the default ones (which were determined when R was
built). You could change the file ‘R_HOME/etc/Makeconf’ to reflect your preferences. If
you are a Bourne shell user, you can also pass the desired flags to Make (which is used for
controlling compilation) via the Make variable MAKEFLAGS, as in

MAKEFLAGS="CFLAGS=-O3" R CMD SHLIB *.c

Chapter 9: R Bugs 43

9 R Bugs

9.1 What is a bug?

If R executes an illegal instruction, or dies with an operating system error message that
indicates a problem in the program (as opposed to something like “disk full”), then it is
certainly a bug. If you call .C(), .Fortran(), .External() or .Call() (or .Internal())
yourself (or in a function you wrote), you can always crash R by using wrong argument
types (modes). This is not a bug.

Taking forever to complete a command can be a bug, but you must make certain that it
was really R’s fault. Some commands simply take a long time. If the input was such that
you know it should have been processed quickly, report a bug. If you don’t know whether
the command should take a long time, find out by looking in the manual or by asking for
assistance.

If a command you are familiar with causes an R error message in a case where its usual
definition ought to be reasonable, it is probably a bug. If a command does the wrong thing,
that is a bug. But be sure you know for certain what it ought to have done. If you aren’t
familiar with the command, or don’t know for certain how the command is supposed to
work, then it might actually be working right. Rather than jumping to conclusions, show
the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This
is a very important sort of problem, but it is also a matter of judgment. Also, it is easy to
come to such a conclusion out of ignorance of some of the existing features. It is probably
best not to complain about such a problem until you have checked the documentation in
the usual ways, feel confident that you understand it, and know for certain that what you
want is not available. If you are not sure what the command is supposed to do after a
careful reading of the manual this indicates a bug in the manual. The manual’s job is to
make everything clear. It is just as important to report documentation bugs as program
bugs. However, we know that the introductory documentation is seriously inadequate, so
you don’t need to report this.

If the online argument list of a function disagrees with the manual, one of them must be
wrong, so report the bug.

9.2 How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands you
type, starting with the shell command to run R, until the problem happens. Always include
the version of R, machine, and operating system that you are using; type version in R to
print this.

The most important principle in reporting a bug is to report facts, not hypotheses or
categorizations. It is always easier to report the facts, but people seem to prefer to strain
to posit explanations and report them instead. If the explanations are based on guesses
about how R is implemented, they will be useless; others will have to try to figure out what

Chapter 9: R Bugs 44

the facts must have been to lead to such speculations. Sometimes this is impossible. But
in any case, it is unnecessary work for the ones trying to fix the problem.

For example, suppose that on a data set which you know to be quite large the command
R> data.frame(x, y, z, monday, tuesday)

never returns. Do not report that data.frame() fails for large data sets. Perhaps it fails
when a variable name is a day of the week. If this is so then when others got your report
they would try out the data.frame() command on a large data set, probably with no day
of the week variable name, and not see any problem. There is no way in the world that
others could guess that they should try a day of the week variable name.

Or perhaps the command fails because the last command you used was a method for
"["() that had a bug causing R’s internal data structures to be corrupted and making the
data.frame() command fail from then on. This is why others need to know what other
commands you have typed (or read from your startup file).

It is very useful to try and find simple examples that produce apparently the same bug,
and somewhat useful to find simple examples that might be expected to produce the bug
but actually do not. If you want to debug the problem and find exactly what caused it,
that is wonderful. You should still report the facts as well as any explanations or solutions.
Please include an example that reproduces the problem, preferably the simplest one you
have found.

Invoking R with the ‘--vanilla’ option may help in isolating a bug. This ensures that
the site profile and saved data files are not read.

On Unix systems a bug report can be generated using the function bug.report(). This
automatically includes the version information and sends the bug to the correct address.
Alternatively the bug report can be emailed to r-bugs@r-project.org or submitted to the
Web page at http://bugs.r-project.org/.

Bug reports on contributed packages should perhaps be sent to the package maintainer
rather than to r-bugs.

mailto:r-bugs@r-project.org
http://bugs.r-project.org/

Chapter 10: Acknowledgments 45

10 Acknowledgments

Of course, many many thanks to Robert and Ross for the R system, and to the package
writers and porters for adding to it.

Special thanks go to Doug Bates, Peter Dalgaard, Paul Gilbert, Stefano Iacus, Fritz
Leisch, Jim Lindsey, Thomas Lumley, Martin Maechler, Brian D. Ripley, Anthony Rossini,
and Andreas Weingessel for their comments which helped me improve this faq.

More to some soon . . .

	Introduction
	Legalese
	Obtaining this document
	Citing this document
	Notation
	Feedback

	R Basics
	What is R?
	What machines does R run on?
	What is the current version of R?
	How can R be obtained?
	How can R be installed?
	How can R be installed (Unix)
	How can R be installed (Windows)
	How can R be installed (Macintosh)

	Are there Unix binaries for R?
	What documentation exists for R?
	Citing R
	What mailing lists exist for R?
	What is CRAN?
	Can I use R for commercial purposes?

	R and S
	What is S?
	What is S-Plus?
	What are the differences between R and S?
	Lexical scoping
	Models
	Others

	Is there anything R can do that S-Plus cannot?
	What is R-plus?

	R Web Interfaces
	R Add-On Packages
	Which add-on packages exist for R?
	How can add-on packages be installed?
	How can add-on packages be used?
	How can add-on packages be removed?
	How can I create an R package?
	How can I contribute to R?

	R and Emacs
	Is there Emacs support for R?
	Should I run R from within Emacs?
	Debugging R from within Emacs

	R Miscellanea
	Why does R run out of memory?
	Why does sourcing a correct file fail?
	How can I set components of a list to NULL?
	How can I save my workspace?
	How can I clean up my workspace?
	How can I get eval() and D() to work?
	Why do my matrices lose dimensions?
	How does autoloading work?
	How should I set options?
	How do file names work in Windows?
	Why does plotting give a color allocation error?
	How do I convert factors to numeric?
	Are Trellis displays implemented in R?
	What are the enclosing and parent environments?
	How can I substitute into a plot label?
	What are valid names?
	Are GAMs implemented in R?
	Why is the output not printed when I source() a file?
	Why does outer() behave strangely with my function?
	Why does the output from anova() depend on the order of factors in the model?

	R Programming
	How should I write summary methods?
	How can I debug dynamically loaded code?
	How can I inspect R objects when debugging?
	How can I change compilation flags?

	R Bugs
	What is a bug?
	How to report a bug

	Acknowledgments

