
1

0.1 Notation

Keywords apper in type setter face, when pre-
sented in the form like ‘x(yz)’ it means the keyword
‘xyz’ can be abbreviated to ‘x’. ‘[something]’ means
‘something’ is optional. | is used for listing alter-
natives. Slanted face, e.g., variety is used when it
varies (a meta-variable) or is an expression of some
language. For example, modexp is for module expres-
sions and term is for terms (you should know what
these are); others should easily be understood by their
names and/or from the context.

0.2 Starting CafeOBJ interpreter

To enter CafeOBJ, just type its name: cafeobj
‘cafeobj -help’ will show you a summary of com-

mand options.

0.3 Leaving CafeOBJ

q(uit) exits CafeOBJ.

0.4 Getting Little Help

Typing ? at the top-level prompt will print out a list
of whole top-level commands.

0.5 Escape

There would be a situation that you hit return ex-
pecting some feedback from the interpreter, but it does
not respond. This occurs when the interpreter expects
some more inputs from you thinking preceding input is
not yet syntactically complete. If you encounter this
situation, and you don’t know what the interpreter
expects, simply type in esc(escape key) and return,
then it will immediately be back to you discarding pre-
ceding input and makes a fresh start. Alternatively,
you can type in several return keys. This acts exactly
the same as typing esc and return.

0.6 Rescue

Occasionally you may meet a strange prompt CHAOS>>
after some error messages. This happens when the
interpreter caused some internal errors and could not
recover from it. Try typing :q, this may resume the
session if you are lucky.

Sending interrupt signal (typing C-c from keyboard,
or if you are in Emacs, some key sequence specific to
the mode you are in) forces the interpreter to break
into underlying Lisp, and you will see the same prompt
as the above. This might be useful when you feel the

interpreter get confused. :q also works for returning
to CafeOBJ interpreter from Lisp.

0.7 Setting Switches

Switches are for controlling the interpreter’s behaviour
in several manner. The general form of setting top-
level switch is:

set switch value

In the following, the default value of a switch is
shown underlined.

switchvaluewhat? *** – switches for rewrit-
ing trace wholeon—offtrace top-level rewrite
step traceon—offtrace every rewrite step
stepon—offstepwise rewriting process mem-
oon—offenable term memoization clean mem-
oon—offclean up term memo table before normal-
ization statson—offshow statistics data after reduc-
tion rwt limit numbermaximum number of rewriting
stop pattern[term] .stop rewriting when meets mel
sorton—offcompute result sort with sort membership
predicates reduce conditionson—offreduce conditional
part in apply command verboseon—offset verbose
mode exec traceon—offtrace concurrent execution
exec limitnumber limit maximum number of con-
current execution exec normalizeon—offreduce term
before and after each transition exec allon—offfind
all solutions of =(*)=> *** – switches for system’s
behaviour include BOOLon—offimport BOOL im-
plicitly incude RWLon—offimport RWL implicitly in-
clude FOPL-CLAUSEon—offimport FOPL-CLAUSE
implicitly auto contexton—offchange current con-
text in automatic auto reconstructon—offperform
automatic reconstruction of modules if it is incon-
sistent reg signatureon—offregularize module sig-
nature in automatic check regularityon—offperform
regularity check of signature in automatic check
compatibilityon—offperform compatibility check
of TRS in automatic check builtinon—offperform
operator overloading check with built-in sorts se-
lect termon—offsystem selects a term from am-
biguously parsed terms quieton—offsystem mostly
says nothing – show/display options all axiom-
son—offprint all axioms in ”sh(ow) modexp ” com-
mand show mode:cafeobjset syntax of printed modules
—:chaosor views show var sortson—offprint vari-
ables with sorts print mode:normalset term priting
form —:fancy —:tree —:s-expr *** – miscellaneous
settings libpathpathnameset file search path print
depthnumbermaximum depth of terms to be printed
accept =*= proofon—offaccept system’s automatic
proof of congruency of =*=

The default value of pathname of set libpath

command is ‘$cafeobjhome/lib, $cafeobjhome/exs’,
where ‘$cafeobjhome’ varies depending on the instal-

2

lation options of your interpreter. Normally, it is
/usr/local/lib/cafeobj1.4.

The default value of number in ‘set rwt limit’ com-
mand is 0 meaning no limit counter of rewriting is
specified.

Omitting term in set stop pattern sets the stop
pattern to empty, i.e., no term will match to the pat-
tern.

0.8 Examining Values of Switches

show switchprint list of available switches with their
values show switch switchprint out the value of the
specified switch

0.9 Setting Context

select modexp

This sets the context of the interpreter (current
module) to the module specified by modexp. It must
be written in single line. When you type in modexp,
the ‘;<newline>’ treated as a line continuation (that
is, it is effectively ignored), so that you can type in
multiple lines for long module expressions. Note that
one or more blank characters are required before ;.

0.10 Inspecting Module

sh(ow) and desc(ribe) commands print information
on a module. In the sequel, we use a meta-variable
show which stands for either sh(ow) or desc(ribe).
Most of the cases, giving desc(ribe) for show gives
you more detailed information.

show modexpprints a module modexp. giving ‘.” as
modexp shows the current module show sorts [mod-
exp]prints sorts of modexp show ops [modexp]prints
operators of modexp show vars [modexp]prints vari-
ables of modexp show params [modexp]prints param-
eters of modexp show subs [modexp]prints direct sub-
modules of modexp show sign [modexp]prints sorts

and ops combined

modexp must be given in an one line. The same con-
vention for long module expressions is used as that of
select command (see Setting Context above.) If the
optional [modexp] is omitted, it defaults to the current
module. Optionally supplying all before sorts, ops,
axioms, and sign, i.e., desc all ops for an instance)
makes printed out information also include imported
sorts, operators, etc. otherwise it only prints own con-
structs of the modexp.

The following show commands assume the current
module is set to some module. show sort sortprints
information on sort sort show op operatorprints infor-
mation on operator operaotr

For inspecting submodules or parameters, the fol-
lowing show commands are useful: show param
argnameprints information on the parameter show
sub nprints information on the nth direct submodule
argname can be given by position, not by name.

You can see the hierarchy of a module or a sort by
the follwing sh(ow) commands: sh(ow) module tree
modexpprints pictorial hierarchy of module. specifying
. as modexp shows the hierarcy of the current module
sh(ow) sort tree sortprints hierarchy of sort pictorially

0.11 Evaluating Terms

red(uce) [in modexp :] term .

exec(ute) [in modexp :] term .

reduce reduces a given term term in the term
rewriting system derived from modexp. execute is
similar to reduce, but it also considers axioms given
by transition declarations. In both cases, omitted ‘in
modexp :’ defaults to the current module.

The result term of reduce and execute is bould to
special variables $$term and $$subterm (see the next
section).

0.12 Let Variables and Special
Variables

let let-variable = term .

let-variable is an indentifier. Assuming the current
module is set, let binds let-variable to the given term
term. Once set, let-variable can be used wherever term
can apper.

You can see the list of let bidings by:

sh(ow) let

There are two built-in special variables in the sys-
tem: $$termbound to the result term of reduce,
execute, parse, or start commands. $$sub-
termbound to the result of choose command

Let variales and special variables belongs to a con-
text, i.e., each context has its own let variables and
special variables.

0.13 Inspecting Terms

parse [in modexp :] term .

parse parses given term term in the module modexp
(if omitted, parses in the current module) and prints
the result. The result is bound to special variables
$$term and $$subterm.

The following sh(ow) command assumes the current
module, and prints the term.

sh(ow) term [let-variable] [tree]

let-variable can be a name of let-variable, $$term
or $$subterm, if omitted the term bound to $$term

3

is printed. If optional tree is supplied, it prints the
term tree structure.

0.14 Opening/Closing Module

open modexpopens module modexp closeclose the cur-
rently opening module Opening module can be modi-
fied, i.e., you can declare new sorts, operators, axioms.
You can open only one module at a time.

0.15 Applying Rewrite Rules

Start The initial target (entire term) is set by start

command.
start term .
This binds two special variables $$term and

$$subterm to term.

Apply apply command applies actions to (subterm
of) $$term.
apply action range selection
You specify an action by action, and it will be ap-

plied to the target (sub)term specified by selection.
range is either within or at: within means at or

inside the (sub)term specified by the selection, and at

means exactly at the selection.

Action action can be the followings:
red(uction)reduce the selected term execexecute
the selected term printprint the selected term rule-
specapply specified rule to the selected term

Rule-Spec rule-spec specifies the rule with possibly
substitutions being applied, and given by

[+ | -][modexp].rule-name [substitutions]
The first optional ‘+ | -’ specifies the direction of

the rule; left to right(if + or omitted) or right to left
(if -).

A rule itself is specified by ‘[modexp].rule-name]’.
This means the rule with name rule-name of the
module modexp (if omitted, the current module).
rule-name is either a label of a rule or a number
which shown by sh(ow) rules command (see Show-
ing Available Rules below.)

substitution binds variables that apper in the se-
lected rule before applying it. This has the form
with variable = term , ...

Showing Available Rules To see the list of the
rewrite rules, use
sh(ow) [all] rules
The list of the (all, i.e., includes imported rules if

the optional all is supplied) available rules are printed
with each of which being numbered. The number can
be used for rule-name (see above).

Selection selection is a sequence of selector sepa-
rated by keyword of specifying (sub)term of $$term:

selector { of selector } · · · selectordescription
termthe entire term ($$term) topditto subtermselects
$$subterm (number · · ·)selects by position [num-
ber .. number]by range in flattened term structure
{ number , · · · }subset in flattened term structure

Step by Step Subterm Selection choose com-
mand selects a subterm of $$subterm and reset the
$$subterm to the selected one.

choose selector

Matching Terms match term spec to pattern

term spec specifies the term to be matched with
pattern: term specdescription term$$term topditto
subterm$$term itditto termordinal term

patterndescription [all][+ | -] rulesmatch
with available rewrite rules termmatch with specified
term

0.16 Stepper

If the switch step is set to on, invoking reduce or
execute command runs into the term rewriting step-
per. The stepper has its own command interpreter
loop, where the following stepper commands are avil-
able:

?print out available commands. n(ext)go one step
g(o) numbergo number step c(ontinue)continue rewrit-
ing without stepping q(uit)leave stepper continuing
rewrite a(bort)abort rewriting r(rule)prints current
rewrite rule s(ubst)prints substitution l(imit)prints
rewrite limit counter p(attern)prints stop pattern stop
[term]set (unset) stop pattern rwt [number]set (un-
set) rwrite limit counter You can also use families of
sh(ow)(desc(ribe)) and set commands in stepper.

0.17 Reading In Files

input fileread in CafeOBJ program from file provide
featureprovide the feature require feature [file]require
feature

0.18 Save and Restore

save filesave definitions of modules and views to file re-
store filerestore definitions of modules and views rese-
trecover definitions of built-in modules full-resetreset
system to initial status save-system filesave image of
the interpreter to file

4

0.19 Protecting Your Modules

protect modexpprevent the module from redefinition
unprotect modexpallow moudle to be redefined

0.20 Little Semantic Tools

check reg(ularity) [modexp]reports the result of reg-
ularity check of module check comat(ibility) [mod-
expreports the result of compatibility check of the
module For both commands, omitted modexp will
perform the check in the current module.

The following check command assumes the current
module:
check laziness [operator]
This checks strictness of operator . If operator is

omitted all of the operators declared in the current
modules are checked.

0.21 TRAM Compiler Interface

tram compile [modexp]
This compiles module modexp to Term Rewriting

Abstract Machine. If modexp is omitted, it defaults
to the current module. modexp must be given in an
line. You can supply multiple lines by using ‘;<new-
line>’.

To evaluate term in compiled module, use the fol-
lowing:
tram exec [in modexp :] term
Omitting ‘in modexp :’ means the evaluation is per-

formed in the current module. If the module modexp
is not yet compiled, this compiles it implicitly, then
perform the evaluation.

0.22 Miscellany

ls pathnamelist contents of directories cd path-
namechange working directory of the interpreter pwd-
prints working directory ! command fork shell com-
mand ev lispevaluate lisp expression lisp printing the
result evq lispevaluate lisp expression lisp

