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1. Overview

Coco/R is a compiler generator, which takes an attributed grammar
of a source language and generates a scanner and a recursive
descent parser for this language. The user has to supply a main
class that calls the parser as well as semantic classes (e.g. a symbol
table handler or a code generator) that are used by semantic
actions in the parser. This is shown in Figure 1.

—_— COGMR.'-[::;:--'P Parser
[ |
conrpiler | Scanner | | |

description icd

Figure 1 Input and output of Coco/R

1.1 Sample Production

In order to give you an idea of how attributed grammars look like in
Coco/R, let us look at a sample production for variable declarations
in a Pascal-like language:

VarDeclaration<ref int adr> (. string name; TypeDesc type; .)
= Ident<out name> (. Obj x = symTab.Enter(name);
int n=1; .)
{ ',' Ident<out name> (. Obj y = symTab.Enter(name);
x.next =y; x =vy;
n++; .)
}
":' Type<out type> (. adr += n * typ.size;
for (int a = adr; x != null; x = Xx.next) {
a -= type.size;
X.adr = a;

P

The core of this specification is the EBNF production
VarDeclaration = Ident {',' Ident} ':' Type ';'.

It is augmented with attributes and semantic actions. The
attributes (e.g. <out name>) specify the parameters of the symbols.
There are input attributes (e.g. <x, y>) and output attributes (e.g.
<out z> Or <ref z>). A semantic action is a piece of code that is
written in the target language of Coco/R (e.g. in C#, Java or C++)
and is executed by the generated parser at its position in the
production.



1.2 Sample Parsing Method

Every production is translated into a parsing method. The method
for varbeclaration, for example, looks like this in C# (code parts
originating from attributes or semantic actions are shown in gray):

void VarDeclaration(ref int adr) {
string name; TypeDesc type;
Ident(out name);
Obj x = symTab.Enter(name);
int n = 1;
while (la.kind == comma) {
Get();
Ident(out name);
Obj y = symTab.Enter(name);
X.next = y; x =vy;
n++;

Expect(colon);

Type(out type);

adr += n * type.size;

for (int a = adr; x !'= null; x = X.next) {
a -= type.size;
x.adr = a;

}

Expect(semicolon);

}

Coco/R also generates a scanner that reads the input stream and
returns a stream of tokens to the parser.

1.3 Summary of Features

Scanner

» The scanner is specified by a list of token declarations. Literals
(e.g. "if" or "while") do not have to be declared as tokens but can
be used directly in the productions of the grammar.

» The scanner is implemented as a deterministic finite automaton
(DFA). Therefore the terminal symbols (or tokens) have to be
described by a regular EBNF grammar.

» Comments may be nested. One can specify multiple kinds of
comments for a language.

» The scanner supports Unicode characters encoded in UTF-8.

» The scanner can be made case-sensitive or case-insensitive.

» The scanner can recognize tokens depending on their context in
the input stream.

» The scanner can read from any input stream (not just from a file).
However, all input must come from a single stream (no includes).

» The scanner can handle so-called pragmas, which are tokens that
are not part of the syntax but can occur anywhere in the input
stream (e.g. compiler directives or end-of-line characters).

» The user can suppress the generation of a scanner and can
provide a hand-written scanner instead.



Parser

» The parser is specified by a set of EBNF productions with
attributes and semantic actions. The productions allow for
alternatives, repetition and optional parts. Coco/R translates the
productions into an efficient recursive descent parser. The parser
is reentrant, so multiple instances of it can be active at the same
time.

» Nonterminal symbols can have any number of input and output
attributes (the Java version allows just one output attribute,
which may, however, be an object of a suitable composite class).
Terminal symbols do not have explicit attributes, but the tokens
returned by the scanner contain information that can be viewed
as attributes. All attributes are evaluated during parsing (i.e. the
grammar is processed as an L-attributed grammar).

» Semantic actions can be placed anywhere in the grammar (not
just at the end of productions). They may contain arbitrary
statements or declarations written in the language of the
generated parser (e.g. C#, Java or C++).

» The special symbol ANY can be used to denote a set of
complementary tokens.

» In principle, the grammar must be LL(1). However, Coco/R can
also handle non-LL(1) grammars by using so-called resolvers that
make a parsing decision based on a multi-symbol lookahead or on
semantic information.

» Every production can have its own local variables. In addition to
these, one can declare global variables or methods, which are
translated into fields and methods of the parser. Semantic actions
can also access other objects or methods from user-written
classes or from library classes.

» Coco/R checks the grammar for completeness, consistency and
non-redundancy. It also reports LL(1) conflicts.

» The error messages printed by the generated parser can be
configured to conform to a user-specific format.

» The generated parser and scanner can be specified to belong to a
certain namespace (or package).

2. Input Language

This section specifies the compiler description language Cocol/R
that is used as the input language for Coco/R . A compiler
description consists of a set of grammar rules that describe the
lexical and syntactical structure of a language as well as its
translation to a target language.

2.1 Vocabulary

The basic elements of Cocol/R are identifiers, numbers, strings and
character constants, which are defined as follows:

ident
number
string

letter {letter | digit}.
digit {digit}.
""* {anyButQuote} '"'.



char = '\'' anyButApostrophe '\'"'.

Upper case letters are distinct from lower case letters. Strings
must not extend across multiple lines. Both strings and character
constants may contain the following escape sequences:

\\  backslash \r carriage return \f form feed

\' apostrophe \n new line \a bell

\" quote \t horizontal tab \b backspace

\O null character \v  vertical tab \uxxxx hex char value

The following identifiers are reserved keywords (in the C# version
of Cocol/R the identifier using is also a keyword, in the Java version
the identifier import):

ANY CONTEXT IGNORE PRAGMAS TOKENS
CHARACTERS END IGNORECASE PRODUCTIONS WEAK
COMMENTS FROM NESTED SYNC

COMPILER IF out TO

Comments are enclosed in /*+ and */ and may be nested.
Alternatively they can start with // and go to the end of the line.

EBNF

All syntax descriptions in Cocol/R are written in Extended Backus-
Naur Form (EBNF) [Wirth77]. By convention, identifiers starting
with a lower case letter denote terminal symbols, identifiers
starting with an upper case letter denote nonterminal symbols.
Strings denote themselves. The following meta-characters are
used:

symbo meaning example
1
= separates the sides of a A=abc.

production
. terminates a production A=abc.
| separates alternatives ablJc|demeansab or c or de
() groups alternatives (a|b)c meansac or bc
[] option [alb meansab or b
{} iteration (0 or more times) {a} b means b or ab or aab

or ...

Attributes are written between < and >. Semantic actions are
enclosed in (. and .). The operators + and - are used to form
character sets.

2.2 Overall Structure
A Cocol/R compiler description has the following structure:

Cocol =
[Imports]
"COMPILER" ident
[GlobalFieldsAndMethods]
ScannerSpecification
ParserSpecification
"END" ident '.'



The name after the keyword compILER is the grammar name and must
match the name after the keyword eno. The grammar name also
denotes the topmost nonterminal symbol (the start symbol). The
parser specification must contain a production for this symbol.

Imports. In front of the keyword coMPILER one can import
namespaces (in C#) or packages (in Java) or include header files (in
C++), for example:

using Systenm;

using System.Collections;
GlobalFieldsAndMethods. After the grammar name one may
declare arbitrary fields and methods of the generated parser, for
example:

int sum;

void Add(int x) {
sum = sum + X;

}
These declarations are written in the language of the generated
parser (i.e. in C#, Java or C++) and are not checked by Coco/R.
They can be used in the semantic actions of the parser
specification. In the C++ version of Coco/R global fields and
methods are copied to the header file of the generated parser.

The remaining parts of the compiler description specify the scanner
and the parser that are to be generated. They are now described in
more detail.

2.3 Scanner Specification

A scanner has to read source text, skip meaningless characters,
recognize tokens and pass them to the parser. This is described in a
scanner specification, which consists of five optional parts:
ScannerSpecification =

["IGNORECASE"]

["CHARACTERS" {SetDecl}]

["TOKENS" {TokenDecl}]

["PRAGMAS" {PragmaDecl}]

{CommentDecl}
{WhiteSpaceDecl}.

2.3.1 Character sets

This section allows the user to declare character sets such as
letters or digits. Their names can then be used in the other sections
of the scanner specification. Coco/R supports the Unicode
character set (UTF-8-encoded).

SetDecl = ident '=' Set '.'.
Set = BasicSet {('+'|'-') BasicSet}.
BasicSet = string | ident | char [".." char] | "ANY".

SetDecl associates a name with a character set. Basic character sets
are denoted as:

string a set consisting of all the characters in the string
ident a previously declared character set with this name
char a set containing the character char

charl..char2 the set of all characters from charl to char2
ANY the set of all characters in the range 0 .. 65535



Character sets may be formed from basic sets using the operators

+ set union
- set difference
Examples
digit = "0123456789". /* the set of all digits */
hexDigit = digit + "ABCDEF". /* the set of all hexadecimal digits */
letter = 'A' .. 'Z'. /* the set of all upper case letters */
eol = '\r'. /* the end-of-line character */
noDigit = ANY - digit. /* any character that is not a digit */

2.3.2 Tokens

This is the main section of the scanner specification, in which the
tokens (or terminal symbols) of the language are declared. Tokens
may be divided into literals and token classes.

» Literals (such as while or >=) have a fixed representation in the
source language. In the grammar they are written as strings (e.g.
"while" or ">=") and denote themselves. They don't have to be
declared in the tokens section but are implicitly declared at their
first use in the productions of the grammar.

» Token classes (such as identifiers or numbers) have a certain
structure that must be explicitly declared by a regular expression
in EBNF. There are usually many instances of a token class (e.g.
many different identifiers), which have the same token code, but
different lexeme values.

The syntax of token declarations is as follows:

TokenDecl = Symbol ['=' TokenExpr '.'].
TokenExpr = TokenTerm {'|' TokenTerm}.
TokenTerm = TokenFactor {TokenFactor} ["CONTEXT" '(' TokenExpr ')'l].
TokenFactor = Symbol
| "(' TokenExpr ')'
| '[' TokenExpr ']'
| '{' TokenExpr '}'.
Symbol = ident | string | char.

A token declaration defines the syntax of a terminal symbol by a
regular EBNF expression. This expression may contain strings or
character constants denoting themselves (e.g. ">=" or ';') as well as
names of character sets (e.g. letter) denoting an arbitrary character
from this set. It must not contain other token names, which implies
that EBNF expressions in token declarations cannot be recursive.

Examples
ident letter {letter | digit | ' '}.
number = digit {digit}

"Ox" hexDigit hexDigit hexDigit hexDigit.
float digit {digit} '.' {digit} ['E' ['+'|'-'] digit {digit}].

The token declarations need not be LL(1) as can be seen in the
declaration of number, where both alternatives can start with a 'e'.
Coco/R automatically resolves any ambiguities and generates a

deterministic finite scanner automaton.

Tokens may be declared in any order. However, if a token is
declared as a literal that matches an instance of a more general
token, the literal has to be declared after the more general token.

Example



ident

while
Since the string "while" matches both the tokens while and ident, the
declaration of while must come after the declaration of ident. In
principle, literal tokens don't have to be declared in the token
declarations at all, but can simply be introduced directly in the
productions of the grammar. In some situations, however, it makes
sense to declare them explicitly, for example, in order to get a
token name for them that can be used in resolver methods (see
Section 2.4.6).

letter {letter | digit}.
"while".
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Context-dependent tokens. The CoNTEXT phrase in a TokenTerm
means that the term is only recognized if its context (i.e. the
characters that follow the term in the input stream) matches the
TokenExpr specified in brackets. Note that the TokenExpr is not part of
the token.

Example

number = digit {digit}
| digit {digit} CONTEXT ("..").
float = digit {digit} '.' {digit} ['E' ['+'|'-'] digit {digit}].
The context phrase in this example allows the scanner to distinguish
between float tokens (e.g. 1.23) and integer ranges (e.g. 1..2) that
could otherwise not be scanned with a single character lookahead.
This works as follows: after having read "1." the scanner still works

on both tokens. If the next character is a '.' the characters ".." are
pushed back to the input stream and a number token with the value 1
is returned to the parser. If the next character is not a '.' the

scanner continues with the recognition of a float token.

Hand-written scanners. If the right-hand sides of the token
declarations are missing no scanner is generated. This gives the
user the chance to provide a hand-written scanner, which must
conform to the interface described in Section 3.3.1.

Example

TOKENS
ident
number
n if n
"while"

Tokens are assigned numbers in the order of their declaration. The
first token gets the number 1, the second the number 2, and so on.
The number o is reserved for the end-of-file token. The hand-written
scanner must return the token numbers according to these
conventions. In particular, it must return an end-of-file token if no
more input is available.

It is hardly ever necessary to supply a hand-written scanner,
because the scanner generated by Coco/R is highly optimized. A
user-supplied scanner would be needed, for example, if the scanner
were required to process include directives.

2.3.3 Pragmas

Pragmas are tokens that may occur anywhere in the input stream
(for example, end-of-line symbols or compiler directives). It would
be too tedious to handle all their possible occurrences in the
grammar. Therefore they are excluded from the token stream that
is passed to the parser. Pragmas are declared like tokens, but they
may have a semantic action associated with them that is executed
whenever they are recognized by the scanner.

TokenDecl [SemAction].
"(." ArbitraryStatements ".)".

PragmaDecl
SemAction
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Example
PRAGMAS
option = '$' {letter}. (. foreach (char ch in la.val)
if (ch == 'A') ...
else if (ch == 'B') ...

2)

This pragma defines a compiler option that can be written, for
example, as $A. Whenever it occurs in the input stream it is not
forwarded to the parser but immediately processed by executing its
associated semantic action. Note that 1a.val accesses the value of
the lookahead token 1a, which is in this case the pragma that was
just read (see Section 3.3.4).

2.3.4 Comments

Comments are difficult to specify with regular expressions; nested
comments are even impossible to specify that way. This makes it
necessary to have a special construct to define their structure.

Comments are declared by specifying their opening and closing
brackets. The keyword nesTeD denotes that they can be nested.

CommentDecl = "COMMENTS" "FROM" TokenExpr "TO" TokenExpr ["NESTED"].

Comment delimiters must be sequences of 1 or 2 characters, which
can be specified as literals or as single-element character sets.
They must not be structured (for example with alternatives). It is
possible to declare multiple kinds of comments.

Example

COMMENTS FROM "/*" TO "*/" NESTED
COMMENTS FROM "//" TO eol
Alternatively, if comments cannot be nested one can define them as
pragmas, e.g.:
CHARACTERS
other = ANY - '/' - 'x',
PRAGMAS
comment = "/*" {'/' | other | '*' {'*'} other} '*' {'*'} '/'.
This has the advantage that such comments can be processed
semantically, for example, by counting them or by processing
compiler options within them.

2.3.5 White space

Characters such as blanks, tabulators or end-of-line symbols are
usually considered as white space that should be ignored by the
scanner. Blanks are ignored by default. If other characters should
be ignored as well the user has to specify them in the following
way:

WhiteSpaceDecl = "IGNORE" Set.

Example
IGNORE '\t' + '\r' + '\n'
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2.3.6 Case sensitivity

Some languages such as Pascal are case insensitive. In Pascal, for
example, one can write the keyword while also as while or wHILE. By
default, Coco/R generates scanners that are case sensitive. If this is
not desired, one has to write IGNORECASE at the beginning of the
scanner specification.

The effect of 16NORECASE is that all input to the scanner is treated in a
case-insensitive way. The production

WhileStatement = "while" '(' Expr ')' Statement.

will therefore also recognize while statements that start with white
or wHILE. Similarly, the declaration:
TOKENS
float = digit {digit} '.' ['E' ('+'|'-') digit {digit}].
will cause the scanner to recognize not only 1.2e2 but also 1.2e2 as a
float token. However, the original casing of tokens is preserved in
the val field of every token (see Section 3.3.2) so that the lexical
value of tokens such as identifiers and strings is delivered exactly
as it was written in the input text.

2.4 Parser Specification

The parser specification is the main part of a compiler description.
It contains the productions of an attributed grammar, which specify
the syntax of the language to be parsed as well as its translation.

ParserSpecification = "PRODUCTIONS" {Production}.

Production = ident [FormalAttributes] [LocalDecl] '=' Expression '.'
Expression = Term {'|' Term}.
Term = [[Resolver] Factor {Factor}].
Factor = ["WEAK"] Symbol [ActualAttributes]
| '(' Expression ')'
| '[' Expression ']'
| '{" Expression '}'
| "ANY"
| "SYNC"
| SemAction.
Symbol = ident | string | char.
SemAction = "(." ArbitraryStatements ".)".
LocalDecl = SemAction.

FormalAttributes = '<' ArbitraryText '>'.
ActualAttributes = '<' ArbitraryText 's'.
Resolver = "IF" '(' {ANY} ')"'.

2.4.1 Productions

A production specifies the syntactical structure of a nonterminal
symbol. It consists of a left-hand side and a right-hand side which
are separated by an equal sign. The left-hand side specifies the
name of the nonterminal together with its formal attributes and the
local variables of the production. The right-hand side consists of an
EBNF expression that specifies the structure of the nonterminal as
well as its translation in form of attributes and semantic actions.

The productions may be given in any order. References to as yet
undeclared nonterminals are allowed. For every nonterminal there
must be exactly one production. In particular, there must be a
production for the grammar name, which is the start symbol of the
grammar.
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2.4.2 Semantic Actions

A semantic action is a piece of code written in the target language
of Coco/R (i.e. in C#, Java or C++). It is executed by the generated
parser at the position where it has been specified in the grammar.
Semantic actions are simply copied to the generated parser without
being checked by Coco/R.

A semantic action can also contain the declarations of local
variables. Every production has its own set of local variables, which
are retained in recursive productions. The optional semantic action
on the left-hand side of a production (Localbecl) is intended for such
declarations, but variables can also be declared in any other
semantic action.

Here is an example that counts the number of identifiers in an
identifier list:

IdentList =
ident (. intn=1; .)
{',' ident (. n++; )
} (. Console.WriteLine("n =" + n); .)

As a matter of style, it is good practice to write all syntax parts on
the left side and all semantic actions on the right side of a page.
This makes a production better readable because the syntax is
separated from its processing.

Semantic actions cannot only access local variables but also fields
and methods declared at the beginning of the attributed grammar
(see Section 2.2) as well as fields and methods of imported classes.

2.4.3 Attributes

Productions are considered as (and are actually translated to)
parsing methods. The occurrence of a nonterminal on the right-
hand side of a production can be viewed as a call of that
nonterminal's parsing method.

Nonterminals may have attributes, which correspond to parameters
of the nonterminal's parsing method. There are input attributes,
which are used to pass values to the production of a nonterminal,
and output attributes, which are used to return values from the
production of a nonterminal to its caller (i.e. to the place where this
nonterminal occurs in some other production).

As with parameters, we distinguish between formal attributes,
which are specified at the nonterminal's declaration on the left-
hand side of a production, and actual attributes, which are
specified at the nonterminal's occurrence on the right-hand side of
a production.

Attributes are enclosed in angle brackets (e.g., < ... >). If attributes
contain the operators '<' or 's' or generic types like List<T> the
attribute brackets must be written as <. ... .>.

Coco/R checks that nonterminals with attributes are always used
with attributes and that nonterminals without attributes are always
used without attributes. However, it does mnot check the
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correspondence between formal and actual attributes, which is left
to the compiler of the target language.

Attributes in C#. A formal attribute looks like a parameter
declaration. In C#, output attributes must be preceded by the
keyword out or ref. The following example declares a nonterminal s
with an input attribute x and two output attributes y and z:

S <int x, out int y, ref string z> = ... .

An actual attribute looks like an actual parameter. Actual input
attributes may be expressions, which are evaluated and assigned to
the corresponding formal attributes. In C#, actual output attributes
must be preceded by the keywords out or ref. They are passed by
reference like output parameters in C#. Here is an example (a and
b are assumed to be of type int, c is assumed to be of type string):

. S<3*a + 1, out b, ref c> ...

The production of the nonterminal s is translated to the following
parsing method:

void S(int x, out int y, ref string z) {
}

Attributes in Java. Since Java does not support output
parameters, the Java version of Coco/R allows only a single output
attribute which is passed to the caller as a return value. However,
the return value can be an object of a class that contains multiple
values.

If a nonterminal has an output attribute it must be the first
attribute. It is denoted by the keyword out both in its declaration
and in its use. The following example shows a nonterminal s with an
output attribute x and two input attributes y and z (for compatibility
with older versions of Coco/R the symbol '~ can be substituted for
the keyword out):

S<out int x, char vy, int z> = ... .

This nonterminal is used as follows:
. S<out a, 'b', c+3> ...
The production of the nonterminal T is translated to the following
parsing method:
int S(char y, int z) {
int x;
return x;
}

Attributes in C++. In the C++ version of Coco/R, input attributes
are translated to value parameters and output attributes to
reference parameters. The following example declares a
nonterminal s with an input attribute x and an output attribute y:

S<int x, int &y> = ... .
Actual attributes are written like actual parameters in C++, i.e,,

there is no distinction between value parameters and reference
parameters:

. S<a+3, b> ...
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Attributes of terminal symbols. Terminal symbols do not have
attributes in Cocol/R. For every token, however, the scanner
returns the token value (i.e. the token's string representation) as
well as the line and column number of the token (see Section
3.3.4). This information can be viewed as output attributes of that
token. If users want to access this data they can wrap a token into
a nonterminal with the desired attributes, for example:

Ident <out string name> =
ident (. name = t.val; .) .

Number <out int value> =
number (. value = Convert.ToInt32(t.val); .) .

The variable t is the most recently recognized token. Its field t.val
holds the textual representation of the token (see Section 3.3.4).

2.4.4 The Symbol ANY

In the productions of the grammar the symbol any denotes any
token that is not an alternative to that any symbol in the current
production. It can be used to conveniently parse structures that
contain arbitrary text. The following production, for example,
processes an attribute list in Cocol/R and returns the number of
characters between the angle brackets:

Attributes < out int len> =

'<! (. int beg = t.pos + 1; .)
{ANY}
> (. len = t.pos - beg; .) .

In this example the token 's>' is an implicit alternative of the any
symbol in curly braces. The meaning is that this Any matches any
token except '>'. t.pos is the source text position of the most
recently recognized token (see Section 3.3.4).

Here is another example that counts the number of statements in a
block:

Block <out int stmts> = (. int n; .)

! (. stmts = 0; .)
{';' (. stmts++; .)

| Block<out n> (. stmts +=n; .)
| ANY

}

I}I .
In this example the any matches any token except ';', '{* and '}’
which are alternatives of it ('{' is a terminal start symbol of Block).

2.4.5 LL(1) Conflicts

Recursive descent parsing requires that the grammar of the parsed
language is LL(1) (i.e. parsable from Left to right with Left-
canonical derivations and 1 lookahead symbol). This means that at
any point in the grammar the parser must be able to decide on the
basis of a single lookahead symbol which of several possible
alternatives have to be selected. The following production, for
example, is not LL(1):
Statement = ident '=' Expression ';'
| ident '(' [ActualParameters] ')' ';'
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Both alternatives start with the symbol ident. When the parser
comes to the beginning of a statement and ident is the next input
token, it cannot distinguish between the two alternatives. However,
this production can easily be transformed to
Statement = ident ( '=' Expression ';'
| '('" [ActualParameters] ')' ';'
)
| ..

where all alternatives start with distinct symbols and the LL(1)
conflict has disappeared.

LL(1) conflicts can arise not only from explicit alternatives like
those in the example above but also from implicit alternatives that
are hidden in optional or iterative EBNF expressions. The following
list shows how to check for LL(1) conflicts in these situations
(Greek symbols denote arbitrary EBNF expressions such as a[bic;
first(a) denotes the set of terminal start symbols of the EBNF
expression a; follow(a) denotes the set of terminal symbols that can
follow the nonterminal A in any other production):

= Explicit alternatives
A = a|B|y. check that first(a) n first(B) = {} O first(a) n first(y) = {} O first(B)
n first(y) = {}.
A =(a])B. check that first(a) n first() = {}

A=(a]). check that first(a) n follow(A) = {}
= Options

A = [a] B. check that first(a) n first(B) = {}

A= [a]. check that first(a) n follow(A) = {}

= Jterations
A {a} B. check that first(a) n first(B) = {}
A {a}. check that first(a) n follow(A) = {}

It would be very tedious and error-prone to check all these
conditions manually for a grammar of a realistic size. Fortunately,
Coco/R does that automatically. For example, the grammar

A=(a| BCd).
B = [b] a.
C = c {d}.

will result in the following LL(1) warnings:

LL1 warning in A: a is start of several alternatives

LL1 warning in C: d is start & successor of deletable structure
The first conflict arises because B can start with an a. The second
conflict comes from the fact that ¢ may be followed by a d, and so
the parser does not know whether it should do another iteration of
{d} in c or terminate ¢ and continue with the d outside.

Another situation that leads to a conflict is when an expression in
curly or square brackets is deletable, e.g.:

A [B] a.
B = {b}.

If the parser tries to recognize A and sees an a it cannot decide
whether to enter the deletable symbol B or to skip [B]. Therefore
Coco/R prints the warning:

LL1 warning in A: contents of [...] or {...} must not be deletable
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Note that Coco/R reports LL(1) conflicts as warnings, not as errors.
Whenever the parser sees two or more alternatives that can start
with the same token it always chooses the first one. If this is what
the user intends then everything is fine, like in the well-known
example of the dangling else that occurs in many programming
languages:
Statement = "if" '(' Expression ')' Statement ["else" Statement]
| ..
Input for this grammar like

if (a > b) if (a > c) max = a; else max = b;
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is ambiguous: does the "else" belongs to the inner or to the outer if
statement? The LL(1) conflict arises because

first("else" Statement) n follow(Statement) = {"else"}

However, this is not a big problem, because the parser chooses the
first matching alternative, which is the "else" of the inner if
statement. This is exactly what we want.

Resolving LL(1) conflicts by grammar transformations

If Coco/R reports an LL(1) conflict the user should try to eliminate
it by transforming the grammar as it is shown in the following
examples.

Factorization. Most LL(1) conflicts can be resolved by
factorization, i.e. by extracting the common parts of conflicting
alternatives and moving them to the front. For example, the
production

A=abc | abd.
can be transformed to
A=ab (c| d).

Left recursion. Left recursion always represents an LL(1) conflict.
In the production

A=Ab | c.

both alternatives start with ¢ (because first(a) = {c}). However, left
recursion can always be transformed into an iteration, e.g. the
previous production becomes

A = c {b}.

Hard conflicts. Some LL(1) conflicts cannot be resolved by
grammar transformations. Consider the following (simplified)
productions from the C# grammar:
Expr = Factor {'+' Factor}.
Factor = '(' ident ')' Factor /* type cast */
| "('" Expr ')’ /* nested expression */
| ident | number.
The conflict arises, because two alternatives of Factor start with '('.
Even worse, Expr can also be derived to an ident. There is no way to
get rid of this conflict by transforming the grammar. The only way
to resolve it is to look at the ident following the '(': if it denotes a
type the parser has to select the first alternative otherwise the
second one. We will deal with this kind of conflict resolution in
Section 2.4.6.

Readability issues. Some grammar transformations can degrade
the readability of the grammar. Consider the following example
(again taken from a simplified form of the C# grammar):

UsingClause = "using" [ident '='] Qualident ';'.
Qualident = ident {'.' ident}.
The conflict is in UsingClause where both [ident '='] and Qualident start

with ident. Although this conflict could be eliminated by
transforming the production to

UsingClause = "using" ident ( {'.' ident}
| '=' Qualident
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) it
the readability would clearly deteriorate. It is better to resolve this
conflict as shown in Section 2.4.6.

Semantic issues. Finally, factorization is sometimes inhibited by
the fact that the se-mantic processing of conflicting alternatives
differs, e.g.:
A =idident (. x =1; .) {',"' ident (. x++; .) } ':'
| ident (. Foo(); .) {',' ident (. Bar(); .) } ';'.

The common parts of these two alternatives cannot be factored out,
because each alternative has its own way to be processed
semantically. Again this problem can be solved with the technique
explained in Section 2.4.6.

2.4.6 LL(1) Conflict Resolvers

A conflict resolver is a boolean expression that is inserted into the
grammar at the beginning of the first of two conflicting alternatives
and decides, using a multi-symbol lookahead or a semantic check,
whether this alternative matches the actual input. If the resolver
yields true, the alternative prefixed by the resolver is selected,
otherwise the next alternative will be checked. A conflict resolver is
written as

Resolver = "IF" '(' ... any expression ... ')'

where any boolean expression can be written between the
parentheses. In most cases this will be a function call that returns
true OT false.

Thus we can resolve the LL(1) conflict from Section 2.4.5 in the
following way:

UsingClause = "using" [IF(IsAlias()) ident '='] Qualident ';'.

IsAlias iS a user-defined method that reads two tokens ahead. It
returns true, if ident is followed by '=', otherwise it returns fatse.

Conflict resolution by a multi-symbol lookahead

The generated parser remembers the most recently recognized
token as well as the current lookahead token in two global
variables (see also Section 3.3.4):

Token t; // most recently recognized token
Token 1la; // lookahead token

The generated scanner offers a method peek() that can be used to
read ahead beyond the lookahead token without removing any
tokens from the input stream. When normal parsing resumes the
scanner will return these tokens again.

With peek() we can implement IsAlias() in the following way:

bool IsAlias() {
Token next = scanner.Peek();
return la.kind == ident && next.kind == eql;

}

The conflict mentioned at the end of Section 2.4.5 can be resolved
by the production

A = IF(FollowedByColon())
ident (. x =1; .) {',"' ident (. x++; .) } ':'
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| ident (. Foo(); .) {',"' ident (. Bar(); .) } ';"'.

and the following implementation of the function FollowedByColon():

bool FollowedByColon() {
Token x = la;

while (x.kind == comma || x.kind == ident)
X = scanner.Peek();
return x.kind == colon;

}

Token names. For peeking it is convenient to be able to refer to
the token numbers by names such as ident or comma. Coco/R
generates such names for all tokens declared in the Tokens section of
the scanner specification. For example, if the tokens are declared
like this:

TOKENS
ident
number
eql
comma
colon

letter {letter | digit}.
digit {digit}.

’

Coco/R will generate the following constant declarations in the
parser:
const int EOF = 0;
const int ident = 1;
const int number = 2;
const int eql = 3;
const int comma = 4;
const int colon = 5;
The token names are preceded by an underscore in order to avoid
conflicts with reserved keywords and other identifiers.

Normally the Tokens section will only contain declarations for token
classes like ident or number. However, if the name of a literal token is
needed for peeking, it has to be declared there as well. In the
productions of the grammar this token can then be referred to
either by its name (e.g. comma) or by its literal value (e.g. ',").

Resetting the peek position. The scanner makes sure that a
sequence of Ppeek() calls will return the tokens following the
lookahead token 1a. In rare situations, however, the user has to
reset the peek position manually. Consider the following grammar:

A = ( IF (IsFirstAlternative()) ...
| IF (IsSecondAlternative()) ...

| ...

).
Assume that the function IsFirstAlternative() starts peeking and
finds out that the input does not match the first alternative. So it
returns false and the parser checks the second alternative. The
function 1ssecondAlternative() starts peeking again, but before that, it
should reset the peek position to the first symbol after the
lookahead token 1a. This can be done by calling scanner.ResetPeek().

bool IsSecondAlternative() {
scanner.ResetPeek();

Token x = scanner.Peek(); // returns the first token after the
// lookahead token again
}

The peek position is reset automatically every time a regular token
is recognized by scanner.Scan() (see Section 3.3.1).
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Translation of conflict resolvers. Coco/R treats resolvers like
semantic actions and simply copies them into the generated parser

at the position where they appear in the grammar. For example, the
production

UsingClause = "using" [IF(IsAlias()) ident '='] Qualident ';'.
is translated into the following parsing method:
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void UsingClause() {
Expect(_using);
if (IsAlias()) {
Expect(_ident);
Expect(_eql);

}
Qualident();
Expect(_semicolon);

}

Conflict resolution by exploiting semantic information

A conflict resolver can base its decision not only on lookahead
tokens but also on any other information. For example it could
access a symbol table to find out semantic properties about a
token. Consider the following LL(1) conflict between type casts and
nested expressions, which can be found in many programming
languages:
Expr = Factor {'+' Factor}.
Factor = '(' ident ')' Factor /* type cast */
| '(" Expr ")’ /* nested expression */
| ident | number.
Since Expr can start with an ident as well the conflict can be resolved
by checking whether this ident denotes a type or some other object:
Factor = IF (IsCast())
"(' ident ')' Factor /* type cast */
| '(" Expr ')' /* nested expression */
| ident | number.
IsCast() looks up ident in the symbol table and returns true, if it is a
type name:
bool IsCast() {
Token x = scanner.Peek();
if (la.kind == 1lpar && x.kind == _ident) {
object obj = symTab.Find(x.val);
return obj != null && obj.kind == Type;
} else return false;

}

Placing resolvers correctly

Coco/R checks if resolvers are placed correctly. The following rules
must be obeyed:

1. If two alternatives start with the same token, the resolver must
be placed in front of the first one. Otherwise it would never be
executed because the parser would always choose the first
matching alternative. More precisely, a resolver must be placed
at the earliest possible point where an LL(1) conflict arises.

2. A resolver may only be placed in front of an alternative that is in
conflict with some other alternative. Otherwise it would be
illegal.

Here is an example of incorrectly placed resolvers:

-

F L) b // resolver not evaluated. Place it a